

## NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE (NAAC Accredited)



(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

### DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

## **COURSE MATERIALS**



ECT 204:SIGNALS & SYSTEMS

#### VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

### MISSION OF THE INSTITUTION

**NCERC** is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

## ABOUT DEPARTMENT

♦ Established in: 2002

♦ Course offered: B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

- ♦ Approved by AICTE New Delhi and Accredited by NAAC
- ♦ Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

### **DEPARTMENT VISION**

Providing Universal Communicative Electronics Engineers with corporate and social relevance towards sustainable developments through quality education.

## **DEPARTMENT MISSION**

- 1) Imparting Quality education by providing excellent teaching, learning environment.
- 2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets (things) are getting obsolete in short span.
- 3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields of interest later.
- 4) Promoting leading edge Research & Development through collaboration with academia & industry.

### PROGRAMME EDUCATIONAL OBJECTIVES

PEOI. To prepare students to excel in postgraduate programmes or to succeed in industry/ technical profession through global, rigorous education and prepare the students to practice and innovate recent fields in the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering fundamentals required to solve engineering problems and to have strong practical knowledge required to design and test the system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.

PEO4. To provide student with an academic environment aware of excellence, effective communication skills, leadership, multidisciplinary approach, written ethical codes and the life-long learning needed for a successful professional career.

#### PROGRAM OUTCOMES (POS)

## Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

### PROGRAM SPECIFIC OUTCOMES (PSO)

**PSO1**: Facility to apply the concepts of Electronics, Communications, Signal processing, VLSI, Control systems etc., in the design and implementation of engineering systems.

**PSO2**: Facility to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, either independently or in team.

## COURSE OUTCOMES ECT 204

| SUBJECT CODE: ECT 204                                       |                                                     |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| COURSE OUTCOMES                                             |                                                     |  |  |  |  |
| After the completion of the course student will be able to: |                                                     |  |  |  |  |
|                                                             |                                                     |  |  |  |  |
| C204.1                                                      | C204.1 Represent various signals and systems        |  |  |  |  |
| C204.2                                                      | Represent & Analyze the continuous time system with |  |  |  |  |
|                                                             | Laplace transform and Fourier transform             |  |  |  |  |
| C204.3                                                      | Understand the concept of sampling                  |  |  |  |  |
| C204.4                                                      | Analyze the discrete time system using DTFT         |  |  |  |  |
| C204.5                                                      | Analyze the DT systems with Z Transform             |  |  |  |  |

## MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

| CO'S   |   | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|--------|---|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| C204.1 | 3 | 3   |     |     |     |     |     |     |     |      |      |      |
| C204.2 |   | 3   | 1   | 2   |     |     |     |     |     |      |      |      |
| C204.3 | 3 | 3   |     | 2   |     |     |     |     |     |      |      |      |
| C204.4 | 3 | 3   | 1   | 2   |     |     |     |     |     |      |      |      |
| C204.5 | 3 | 3   | 1   | 2   |     |     |     |     |     |      |      |      |

| CO'S   | PSO1 | PSO2 |
|--------|------|------|
| C204.1 |      | 1    |
| C204.2 | 3    | 1    |
| C204.3 |      | 1    |
| C204.4 | 3    | 1    |
| C204.5 | 3    | 1    |

### **SYLLABUS**

Elementary signals, Continuous time and Discrete time signals and systems, Signal operations, Differential equation representation, Difference equation representation, Continuous time LTI Systems, Discrete time LTI Systems, Correlation between signals, Orthogonality of signals, Frequency domain representation, Continuous time Fourier series, Continuous time Fourier transform, Using Laplace transform to characterize Transfer function, Stability and Causility using ROC of Transfer transform, Frequency response, Sampling, Aliasing, Z transform, Inverse Z transform, Unilateral Z-transform, Frequency domain representation of discrete time signals, Discrete time Fourier series and discrete time Fourier transform (DTFT), Analysis of discrete time LTI systems using the above transforms.

#### Text Books

- 1. Alan V. Oppenheim and Alan Willsky, Signals and Systems, PHI, 2/e, 2009
- 2. Simon Haykin, Signals & Systems, John Wiley, 2/e, 2003

#### Reference Books

- Anand Kumar, Signals and Systems, PHI, 3/e, 2013.
- B P. Lathi, Priciples of Signal Processing & Linear systems, Oxford University Press.
- 3. Gurung, Signals and System, PHI.
- 4. Mahmood Nahvi, Signals and System, Mc Graw Hill (India), 2015.
- P Ramakrishna Rao, Shankar Prakriya, Signals and System, MC Graw Hill Edn 2013.
- 6. Rodger E. Ziemer, Signals & Systems Continuous and Discrete, Pearson, 4/e, 2013

## Course Contents and Lecture Schedule 2014

| Module | Торіс                                                                                                                                               | Number of lecture<br>hours |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|        | Elementary Signals, Classification and representation of continuous time and discrete time signals, Signal operations                               | 4                          |
| I      | Continuous time and discrete time systems – Classification, Properties.                                                                             | 3                          |
|        | Representation of systems: Differential equation representation of continuous time systems. Difference equation representation of discrete systems. | 2                          |
|        | Continuous time LTI systems and convolution integral.                                                                                               | 2                          |

## ELECTRONICS AND COMMUNICATION ENGINEERING

|   | T                                                                                                                  | _ |
|---|--------------------------------------------------------------------------------------------------------------------|---|
|   | Discrete time LTI systems and linear convolution.                                                                  | 2 |
|   | Stability and causality of LTI systems.                                                                            | 2 |
|   | Correlation between signals, Orthogonality of signals.                                                             | 1 |
|   | Frequency domain representation of continuous time signals -<br>continuous time Fourier series and its properties. | 4 |
| п | Continuous time Fourier transform and its properties. Convergence and Gibbs phenomenon                             | 3 |
|   | Review of Laplace Transform, ROC of Transfer function,<br>Properties of ROC, Stability and causality conditions    | 3 |
|   | Relation between Fourier and Laplace transforms.                                                                   | 1 |
|   |                                                                                                                    |   |

| III | Analysis of LTI systems using Laplace and Fourier transforms.  Concept of transfer function, Frequency response, Magnitude and phase response.                 | 4 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | Sampling of continuous time signals, Sampling theorem for lowpass signals, aliasing.                                                                           | 3 |
| IV  | Frequency domain representation of discrete time signals, Discrete time fourier series for discrete periodic signals. Properties of DTFS.                      | 4 |
|     | Discrete time fourier transform (DTFT) and its properties.  Analysis of discrete time LTI systems using DTFT. Magnitude and phase response.                    | 5 |
| v   | Z transform, ROC , Inverse transform, properties, Unilateral Z transform.                                                                                      | 3 |
|     | Relation between DTFT and Z-Transform, Analysis of discrete time LTI systems using Z transforms, Transfer function. Stability and causality using Z transform. | 4 |

## **QUESTION BANK**

## **MODULE 1**

- 1. Check whether the signal  $x(t) = 10\sin 50\Pi t + \cos 100\Pi t$  is periodic or not. Find the fundamental period if periodic.
- 2. Plot the signal x(t)=2u(t+1)+2u(t)-3u(t-3)-2u(t-5)
- 3. Check whether the following signals are energy or power signals

(a) 
$$x(t) = e^{-3|t|}$$

(b) 
$$x(n) = (1/4)^n u(n)$$

$$(c)x(t)=e^{3t}u(t-2)$$

(d) 
$$x(n) = (1/2)^n u(n-2)$$

(e) 
$$x(t) = e^{-2t}u(-t)$$

- 4. Determine whether the system, y(n)=x(n)+5/x(n-5) is Time invariant, Linear, Static, Stable and Causal.
- 5. Show that the product of 2 odd signals is an even signal
- 6. What are signals? Explain the classification of signals.
- 7. Explain about the different properties of system.
- 8. Define static and dynamic system.
- 9. Define odd and even signal.
- 10. Find the odd and even components of the signal  $x(n) = \{1,2,-1\}$

- 11. Check the causality and stability of the systems whose impulse responses are given by (i)  $h(t) = e^{at} u(t)$  (ii)  $h(n) = 2^n u(-n)$
- 12. Find the convolution of x(t)=u(t+1)-u(t-1) with h(t)=u(t+2)-u(t-2)
- 13. Find the output of the system with impulse response  $h(n)=\{1,2\}$  to the input  $x(n)=\{2,-3,7\}$
- 14. Compute the auto correlation of the signal  $x(n)=a^n u(n)$  for 0<a<1
- 15. Find the output of the system with impulse response  $h(n) = (1/2)^n u(n)$  to the input x(n) = u(n-5)
- 16. Find the convolution of  $x_1(t)=e^{-2t}u(t)$  and  $x_2(t)=u(t)+u(t-2)$
- 17. Find the convolution of  $h(n)=\{1,2\}$  with  $x\{n\}=\{2,-3,7\}$  using Matrix method.

### **MODULE II**

- 1. Determine the Fourier transform and Laplace transform of  $x(t) = \delta(t)$
- 2. Find the Laplace transform of tu(t)
- 3. Find the inverse Laplace of  $X(s) = (2/s^2)-4$
- 4. Find the Laplace transform of (a) u(t) (b) Impulse function
- 5. Find the inverse Laplace transform of 1/[s(s-3)]
- 4. Determine the transfer function of system with poles at s=-1,2 and zeros at s=3
- 5. Find the inverse Laplace transform of 1/[s²-4s+3]
- 6. Prove Parsevals Theorem
- 7. Determine the unilateral laplace transform of sinwt and coswt
- 8. State and Prove the properties of Laplace transform.
- 9. What is ROC
- 10. Find the Laplace transform and ROC of the signal  $x(t) = -e^{at}u(-t)$
- 11. Find the Fourier transform of the signal  $x(t) = e^{-a|t|}$
- 12. Obtain the Trigonometric Fourier Series representation of the signal



- 13. What is the relation between Laplace and Fourier transform.
- 14. State and Prove the properties of CTFS.
- 15. State and Prove the properties of CTFT.

## **MODULE III**

- 1. State and prove the sampling theorem for low pass signals
- 2. A signal  $x(t) = 2 \cos 400\pi t + 6 \cos 600 \pi t$  is sampled with a sampling frequency 800Hz. Write the resultant discrete time signal.
- 3. Determine the Nyquist rate of sampling for the signals

*i*) 
$$x(t) = 2\sin 250\pi t + 3\cos^2 500t$$

$$ii) x(t) = 10 sinc 500t$$

The step response of an LTI system is (1-e<sup>-t</sup>-te<sup>-t</sup>)u(t). For an input x(t), the

- 4. output is observed to be (2 3e <sup>-t</sup>+ e<sup>-3t</sup>)u(t). For this observed measurement, determine the input to the system using laplace transform.
- **5.** For the following system described by differential equation, find the impulse response if the system is stable

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{d^2x(t)}{dt^2} + 8\frac{dx(t)}{dt} + 13x(t)$$

Assume initial conditions as zero.

6. A continuous time LTI system is described by the differential equation

$$\frac{d}{dt}y(t) + 5y(t) = x(t)$$

Determine the response of the system to the input  $x(t) = e^{-2t}u(t)$  using Fourier Transform.

7. Explain the Dirichlet's condition for the existence of Fourier Transform

### **MODULE IV**

1. Evaluate the inverse Z-transform of

$$X(z) = \log \quad \frac{1}{1 - az^{-1}} \qquad |a| \le |z|$$

2. Evaluate the DTFT of following signal

$$x(n) = a^n \sin \Omega_0 nu(n)$$

- **3.** Find the DTFT of  $x(n) = 0.25^{n} u(n+2)$
- **4.** Give the Parseval's theorem for DTFT. Prove it.
- 5. Compute the energy of the sequence

$$x(n) = \frac{\sin \quad \Omega_c n}{\pi n}$$

An LTI system is characterized by the system function given as 
$$H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$$

Under what conditions the system will be obey causality and stability?

Determine the impulse response of the system such that

i) The system is causal ii) The system is stable

Justify the answers.

7. Find the z-transform and specify ROC

i) 
$$x(n) = u(n-2) * (\frac{2}{3})^n u(n)$$

ii) 
$$x(n) = -n(\frac{1}{3})^n u(-n-1)$$

8. Write the Fourier series representation of a discrete time periodic signal with periodicity N. What is the difference between continuous time and discrete time

Fourier series?

#### **MODULE V**

1. A system is described by the difference equation

$$y(n) = x(n) - x(n-1) - \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2)$$

Determine the impulse response of the system using fourier transform. Also find the step response of the system.

2. The frequency response of a three point moving average system is given as

$$H(e^{j\Omega}) = \frac{1}{4} (1 + \cos \Omega) e^{-j\Omega}.$$

Determine the difference equation representation of the system.

3. Determine the response of the system with impulse response  $h(n) = 0.5^n u(n)$  to the input

$$x(n) = 10 - 5\sin \frac{\pi}{2}n$$

4. An LTI system is described by the difference equation

$$y(n) - \frac{9}{4}y(n-1) + \frac{1}{2}y(n-2) = x(n) - 3x(n-1)$$

Specify the ROC of H(z), and determine h(n) for the following conditions

- i) The system is stable ii) The system is causal
- 5. A system is described by the difference equation

$$y(n) = x(n) - x(n-1) - \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2)$$

Determine the transfer function of the system using Z transform.

6. A system is described by the difference equation

$$y(n) = x(n) - x(n-1) - \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2)$$

Determine the frequency response of the system using fourier transform





## Signals:

\$ 14 is a physical quantity that varies with time, space or any other independent variables.

\* Signal supresents data ie data in encoded by muans of a signal.

and vertical axis represent amplitude.

## Examples:

Speech signal (one dimensional) that describes the aquastic pressure variation as a function of time, t.

picture signal (two dimensional) that describes the gray level as a function of spartial as-ordinates aty.

If a signal depends on only one variable, then it is known as one dimensional signal and a signal depends on two variables, then it is known as two dimensional signal.

## classification of signals:

Signals an mainly classified into two:

- \* Continuous line rignals
- \* Discrete time signals.

They are further darriped as.

- \* Deterministic / non deterministic.
- \* periodic / aperiodic
- \* Even / odd. \* Energy / power

(Pupinions scot)

\* They are defined for every value of time t

\* Take all possible values
of amplitude



discrete acn

They are defined as specific interval of time.

Take prile set of amplitude values.



NOTE: A discrete time signal is obtained by sampling a continuous time signal as regular intervals.  $x(nT) = x(n) = x(t) \Big|_{t=nT}$ 

Culture T is the sampling period and n is the independent sanging from - & to + & called lime index. Sampling is the process of converting a constitution of the process of converting a constitution.

Rignal into discrete time signal.

1. Sketch the continuous time rignal  $\alpha(t) = 2 \sin \pi t$  for interval  $0 \le t \le 2$ . Sample the rignal with a sampling period  $\tau = 0.2 \, \text{s}$  and then sketch the discrete time rignal.

Utiven x(t) = 26inTt x(0) = 0 x(0.25) = 1.414 x(0.6) = 2 x(0.45) = .414 x(1) = 0 x(1.26) = -1.414 x(1.5) = -2 x(1.45) = -1.414x(2) = 0



 $x(n\tau) = x(n) = x(t) | t = n\tau$   $= asin\pi t |_{t=n\tau}$   $= asin(n\pi t)$   $= asin(n\pi t)$   $= asin(0.2\pi n)$ 

$$x(0) = 0$$
 $x(1) = 1.175$ 
 $x(1) = 1.175$ 
 $x(1) = 1.902$ 
 $x(2) = 1.902$ 
 $x(3) = 1.902$ 
 $x(4) = 1.175$ 
 $x(6) = 0$ 

2 2 3 4 S 6 7 0 0

2 sketch the signal act):  $\tilde{c}^{t}$  for an interval of  $\tilde{d}^{t}$ ?

Sample the signal with a sampling period T=0.25and then sketch the discrete time signal.

(viven 
$$x(k) = e^{-k}$$
  
 $x(0) = 1$   
 $x(0.25) = 0.47$   
 $x(0.5) = 0.606$   
 $x(0.75) = 0.472$   
 $x(1) = 0.867$   
 $x(1.25) = 0.286$   
 $x(1.6) = 0.223$   
 $x(1.75) = 0.173$   
 $x(2) = 0.135$ 



x(nT) = x(n) = x(n)  $= e^{\frac{1}{2}} \left|_{t=n} = n \times 0.2 \right|_{t=n}$   $= e^{-0.2n}.$ 

 $\mathcal{X}(0) = 1$   $\mathcal{X}(1) = e^{-0.2} = 0.818$   $\mathcal{X}(2) = e^{-0.4} = 0.670$   $\mathcal{X}(3) = e^{-0.6} = 0.94$   $\mathcal{X}(4) = e^{-0.8} = 0.49$   $\mathcal{X}(5) = e^{-1} = 0.36$   $\mathcal{X}(6) = e^{-1.2} = 0.301$   $\mathcal{X}(7) = e^{-1.4} = 0.246$   $\mathcal{X}(7) = e^{-1.6} = 0.2$ 



x(10); e2; 0.135.

24); =-1-8 = 6.14

## Deterministic / non obterministic Rgnal:

Deterministic signal is known for all time and can be predicted in advance exactly. ie everything is known about the signal.

Eq: Sine wave with known phase.



## non deterministic:

Some parameter of the signal is unknown and cannot be predicted exactly.

Sq: Noise signal: we can't define the amplitude values of a noise signal by means of formula or function.

Since it is impossible to specify their behavious in terms of tunction, such organals are described by expected values Ruch as mean and variance.

# Periodic / aperiodic Rignal:

A continuous time signal acts is said to be periodic with period T, y there is a positive value of T for which act+T) = act) for all t

The Smallest positive value of T fox which eard hold is known as fundamental person.



A Agnal à aportodic or non perrodec if the condition in ean or à not satisfied per artion one value of t.

A dissult time signal zero i said to be periodic with period N, if there is a positive value of N for which ecentral partial period. Pull a formation as fundamental period.

Here the sequence is expealing after every 3 samples.

i fundamental period 23.

If ear @ does not satisfy for as least one value of n, then the discuss time signal is appeared in

In sum of two periodic organis  $x_1(1)$  of  $x_2(1)$  or periodic  $y_1$ . The ratio  $x_1/x_2$  is a rational number, otherwise the sum of non periodic.

On Determine whether the following organic is periodic determine its fundamental pulse

a) x(1) = Cos(2+ T/4)

ou- coefficient of L

T = 2T 2 &T Secs.

.: Hu given signal à pariodic.

$$\begin{array}{lll}
\omega_1 & \overline{\eta}_3 & \omega_2 & \overline{\eta}_4 \\
T_1 & 2\overline{\eta} & T_2 & 2\overline{\eta} \\
& \omega_1 & \omega_2
\end{array}$$

$$= 2\overline{\eta}_{13} = 6. \qquad z 2\overline{\eta}_{14} = 8.$$

$$\frac{T_1}{T_2} = \frac{6}{8} = \frac{3}{4}$$

· : the given signal is periodic.

Fundamental period, T = 4T, or 8T2

= 4x6 3x8

$$T_{12} \frac{\partial T_{12}}{\partial u_1} = \frac{\partial T_{12}}{\partial u_2} = \frac{\partial T_{12}}{\partial u_2} = \frac{\partial T_{12}}{\partial u_2} = \sqrt{2} T$$

$$\frac{T_1}{T_2}$$
,  $\frac{2T_1}{\sqrt{2}T_1}$  =  $\sqrt{2}$ 

TI 2 V2 is irralional ! The given Egnal is aperiodic.

W. = 2

T = ATT = TT is rational number .! The given organal is periodic with period T secs.

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\pi/2} = 4$$

is the given signal is periodic with period 4 secs.

$$\frac{T_1}{T_2} = \frac{2}{5}$$
 is a rational no. .'. periodic  $T = BT_1 = T$  secs.

$$\frac{T_1}{T_2} = \frac{5}{6} \quad \text{rational} \quad \text{no. i. periodic}$$

$$T = 6T_1 = \frac{6}{30} = \frac{1}{5} \text{ Secs.}$$

$$T_1 = \overline{Y}_2$$
  $T_2 = Q$ 

T= 4T1= 4 T/2 = 2TT 8CCS.

an Find whether the pollowing discrete time Right

is purodic or not.

a) 
$$x(u)$$
:  $c_{qemu}$ .

NOTE: If  $\Omega$  is a multiple of  $\pi$ , then the triginal is periodic.

22:67 ès a multiple of TT. i. the given signal is periodit

$$N \rightarrow \frac{2\pi}{\Omega}$$
. m

$$=\frac{1}{8}$$
 (m=3)

12=8/5 ù not a multiple of T.

.: the given signal is aperiodic

IZ= 21 II a multiple of TI .: periodic.

2, d si au multiple of TT . . periodic.

$$M_1 = \frac{2\pi}{52}$$
,  $M_2 = \frac{2\pi}{52}$   $M_3 = \frac{2\pi}{3}$   $M_4 = \frac{8}{3}$   $M_4 = \frac{8}{3}$   $M_5 =$ 

$$\frac{N_1}{N_2} = \frac{6}{8} = \frac{3}{4}$$

N= 4N1= 4x6224803.

i a multiple of TI

· : periodic.

$$= \frac{277}{0.2} m_2 10 m_2$$

$$= 10 (m21)$$

Even lodd organil:

8ymmetric Anti symmetric.

A regred x(t) or x(n) is referred to as even agreed if x(-t) = x(t); x(-n) = x(n).





A agonal x(t) or x(t) i reperred to as odd agonal x(t-t) = -x(t) x(-m) = -x(m)





Any eight x(t) can be repressed as sum of even and odd components. ie  $x(t) = x_c(t) + x_0(t) \longrightarrow 0$  when  $x_c(t) - odd$  pool of x(t)

2)

x(-t) = xe(-t) + xo(-t)

 $x(-t) = x_{c}(t) - x_{o}(t) \longrightarrow \textcircled{2}$ 

(4)  $\Delta x - (4) = x + (4) = x = (4 - 1) \times (4) = 0 + 0$ Since the sum of the

.) re(t): x(t)(x(-t)

 $(0-a) \Rightarrow x^{\circ}(F) = x(F) - x(F)$ 

114 for disease in 8/1
20(1)= 1/2 (2(1) - xc-1)]

Scanned by CamScanner

Our find the even and odd components of actes = e  $\alpha_{e(t)} = \alpha_{e(t)} + \alpha_{e(t)} = e^{i t} = cost$  $\alpha_{\text{oll}} = \alpha_{\text{cl}} - \alpha_{\text{cl}} = \alpha_{$ b) xut) = cost + sint + costsint xc-t)= 05(-t)+Sin(-t)+ 05(-t)Sin(-t) 2000 xc-t) = OSE-SINT-GSTSINT  $\alpha_{CL}$ :  $\alpha_{CL}$  =  $\alpha_{SL}$  +  $\alpha_{SL}$  =  $x_0(L)$ : x(L) - x(L) = cos(L+sin) + cos(L+sin) + cos(L+sin)= 2 sint + 2 cost sint = sint + costsint a > 8int [1+cost]. Find the even and odd components of xcn12 \{-2,1,2,-1,3\} Our. accus: 7 [200) + ac-10)]  $x_{e}(0) = \frac{1}{2} [x(0) + x(-0)] = \frac{1}{2} [e+e] = e$ acco = [xco + xc-1)] = = [-1+] = 0 xe(2)= = [x(2)+x(-2)]= = [8+-2]= /2  $\alpha_{e(-1)} = \alpha_{e(1)} = 0$   $\alpha_{e(-2)} = \alpha_{e(2)} = \frac{1}{2}$ · α α ε c ω = { 1/2, 0, 2, 0, 1/2 } 20cn = = [2cm - xc-n] 0=[8-8] & = [6-1x - (0)x] = = (2-8]=0 20(1) = -[x(1) - x(-1)] = -[-1-1]=-1  $x_0(a) = \frac{1}{2} [x(a) - x(-a)] = \frac{1}{2} [3 - 2] = \frac{5}{2}$  $x_0(-1) = -x_0(1) = 1$   $x_0(-2) = -x_0(2) = -5/2$ . .: xo(n)= {-5/2,+1,0,-1,5/2}

... en strouthat the product of two even signal it an even right. Consider two agnals  $x_1(L) \neq x_2(L)$ .

Let  $x(L) = x_1(L) \cdot x_2(L)$ .

 $x_{a}(t)$  } even.

= x1(F) · x5(F) = x(P) · x6(-F)

x(-f) = x(f)

. He product of two even Agnal is an even ignal.

even rignal.

consider two signals arthylacts).

XCH) = 2,(4). 22(4).

Rest) of salts -> odd.

ないもり、ない(ート)、なる(ート)

=  $-\alpha_1(t) \cdot - \alpha_2(t) \cdot \alpha_1(t) \cdot \alpha_2(t) = \alpha(t)$ .

x(+1)= x(+).

cold rignal.

act)= x(t).x2(t).

In(t) - even.

xale) - odd

1. x(-t) = 1. (-t). x2(-t)

= x(f)=xe(f)=-x(f)xe(f) = -x(f)

X(-f) = - X(F)

. I the product of an even and odd highal is an odd highal.

# Energy/power signals:

For a signal x(t), the botal energy is defined as  $E = \frac{Lt}{T \to \infty} \int |x(t)|^2 dt$  Joules and average power,  $P = \frac{Lt}{2T} \int |x(t)|^2 dt$  Walts.

For a signal x(n), the botal energy is defined as  $n = \infty$  and average power,  $P = \frac{1}{N+\infty} \frac{1}{2N+1} \frac{1}{N-1} \frac{1}{N-1}$ 

\* A signal x(t) on x(n) is called an energy

Bgnal if the energy solistics the condition

OZEZOS. For an energy egnal power = 0.

A signal x(t) or x(n) is called a power

Bgnal if the power & sabstep the condition

OZPZOS. For a power signal E= 0.

Energy again  $\begin{cases} E - binik \\ P = 0 \end{cases}$ power signal  $\begin{cases} P - binik \\ E = \infty \end{cases}$ 

check whather the signal 
$$2(1) = \frac{2^{34}}{2^{34}}$$
 or power signal

$$x(1) = \frac{2^{34}}{2^{34}}$$

$$= \frac{14}{1 \to \infty} \int_{-1}^{1} |x(1)|^{3} dt$$

$$= \frac{14}{1 \to \infty} \int_{-1}^{1} |e^{-6t} dt|$$

$$= \frac{14}{1 \to \infty} \int_{-6}^{1} e^{-6t} dt$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} - e^{0} - e^{0} \right]$$

$$= \frac{1}{1 \to \infty} \left[ e^{-6t} - e^{0} - e^{0}$$

an-cheek whether the following signal is every or power.

$$scen) = (\sqrt{3})^n creu$$

$$E = \sum_{n=-\infty}^{\infty} |accn|^{2}$$

$$= \sum_{n=-\infty}^{\infty} |accn|^{2}$$

$$= \sum_{n=-\infty}^{\infty} |(y_{3})^{2} uccn)|^{2}$$

$$= \sum_{n=0}^{\infty} |(y_{3})^{2}|^{2} = \sum_{n=0}^{\infty} (|y_{3}|^{2})^{2}$$

$$= \sum_{n=0}^{\infty} |(y_{3})|^{2} = \sum_{n=0}^{\infty} (|y_{3}|^{2})^{2}$$

$$= \frac{1}{1 - \frac{1}{q}} = \frac{\frac{1}{9 - 1}}{\frac{1}{q}} = \frac{\frac{1}{8} \sqrt{q}}{\frac{2}{q}} = \frac{9}{8} \sqrt{3}.$$

= 
$$L_1$$
  $\frac{1}{\sqrt{2}}$   $\frac{1}{\sqrt{2$ 

$$= L_{1} \frac{1}{\sqrt{1 - (1/4)^{N+1}}}$$

On. Find the power of the signal 
$$acm_2ucm_3$$

$$P_2 L_1 = \frac{1}{1+1+1=3}$$

$$= L_1 = \frac{1}{1+1+1=3}$$

$$= L_2 = \frac{1}{1+1+1=3}$$

$$= L_3 = \frac{1}{1+1+1=3}$$

$$= L_4 = \frac{1}{1+1+1=3}$$

$$\frac{2}{2+\frac{1}{2}} = \frac{1+0}{2+0} = \frac{1}{2} \text{ that }$$

On find the energy of the signal across ucm

$$E = \sum_{n=-\infty}^{\infty} |xenn|^2 / \sum_{n=0}^{\infty} |xenn|^2 = \sum_{n=0}^{\infty} |uenn|^2 = \sum_{n=0}^{\infty} |xenn|^2 = \sum_{n=0}^{\infty} |xe$$

an what is the botal energy of the rignal scort.

Cohich takes the values of anity as  $n \ge -1$ , 0, 1.

$$E_{2} = \sum_{n=-\infty}^{\infty} |x(n)|^{2}$$

Form No. AC 03 Effective Date : 01.06.2014

$$= \sum_{n=-1}^{\infty} 1^{2} = \sum_{n=-1}^{\infty} 1 = 1 + 1 + 1$$

$$= 3$$

$$= \frac{Li}{\tau \to \infty} \int_{-\tau}^{\tau} |\hat{v}|^2 dt = \frac{Li}{\tau \to \infty} \int_{-\tau}^{\tau} dt = \frac{Li}{\tau \to \infty} \left[ \frac{t}{\tau} \right]_{-\tau}^{\tau}$$

$$= \frac{Li}{\tau \to \infty} \left[ \frac{t}{\tau} \right]_{-\tau}^{\tau}$$

$$= \lim_{T \to \infty} \frac{1}{a^{T}} \int_{-T}^{T} e^{-t^{2}} dt = \lim_{T \to \infty} \frac{1}{a^{T}} \int_{-T}^{T} dt$$

$$z \stackrel{\text{LL}}{=} \frac{1}{\tau + \omega} \stackrel{\text{L}}{=} \frac{1}{\tau + \omega} \stackrel{\text{R}}{=} \frac{1}{\tau$$

. power agnal.

on A pair of nowordal organic with a common angular bequency is defined by x, cn = sin 5 Th and x2 cn = 13 cos 5 Th.

or specify the condition which the period is of both a specify the condition which the periodic.

a, cn and x2 cn must satisfy for them to be periodic.

b) worded the amplitude of of the composite nowo idel

organic g(n) > x, (n) + x2 cn.

(a)  $\Delta \Omega_{1} = 5\pi$   $\Delta \Omega_{2} = 5\pi$  $N = 2\pi$   $M = 2\pi$   $M = 2\pi$   $M = 2\pi$   $M = 2\pi$ 

For xicos of zeros to be periodic their period.

No mul be an integer. This can only be

Satisfied for m= 5.

b)  $y(x) = x_{1}(x) + x_{2}(x)$   $= 8in \sin x + \sqrt{9} \cos \pi x$   $= 2 ( y_{2}\sin x) + \sqrt{\frac{13}{2}} \cos 5\pi x$   $= 2 ( \sin 30 \cos x) + \cos 30 \cos 5\pi x$ ).

Amplitude A is given by.

A.  $\sqrt{\frac{2}{2}}$  (amp of  $\frac{2}{2}$  (amp of  $\frac{2}{2}$ )  $\frac{2}{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{2}{2}$ 

Operation performed on the independent variable.

-> Time southon. 8 hijhing

-> Time scaling

-> Ryledion or Time Polding.

1) Time shipping: Time shipping of excess may delay or advance by Agnal in time.

Let xcts be a & continuous time signal, replacing to by (6+6) results in a time shifted signal ych) defined as , ycts = xct+6).

If b < 0 (\_ve) act) is shifted to right (delay) by an amount 'b' secs.

If b>0 (+ve), acts is shifted be left (advance).
by an amount b' secs.



Similarly, the lime shifted by yers = zen+k).

How signal is represented by yers = zen+k).

How or scars is shifted to organ by and 'K' sees.

How key, zen is shifted to left "



Time scaling:

If and, then yet in the compressed version of acres if and, then yet in the compressed version of acres.



11'4 Time scaling of dis.

him s/1 zens is

yens = xeans.

if a > 1, then yens is the compressed version of sens.
If ax 1, then yens is the expanded version of sens.



Scanned by CamScanner

operations performed on dependent variables.

→ Amplitude scaling:

→ addition

> multiplication

Amplified scaling: Amplified scaling of a continuous bound begins act as be supresented by yet) =  $A \propto CL$ ).

and those of a discrete time signal across can be supresented by yers =  $A \propto CD$ .

If  $A > 1 \rightarrow amplification$ 





Egnal addition: The sum of two continuous time signals  $x_i(t)$  and  $z_i(t)$  can be obtained by adding their values at each instant of time







- \* x(4)= 1 PO 05F51 24(E) = 1 By 05E51 YCE)= 2 B7 05 E51
- \* 24(4) = 5 Pu 15+55 Te (6)=0.5 for 14642 4(€)= 8.5 B) 1≤€ €2
- x,(E) = 1 By 25 EE2 TA(E) = 1.5 BY 24/6) YCES 2.5 RIZELES.



multiplication: gaven

multiplication of two signals can be obtained by multiplying their value as every instant.







- \* x1(t) = t & n 0 < b < 1 SUCE) = 1 POY 0 = E = 1 y(t) = t R1 0 = b = 1
  - 21(F) = 1 By 1= F= 8 4(6) = 0.5 for 1 = 62. ytt)= 0.5 Rr 15ts2.
- # x1(f)= 0.5 for 2 \cdot \cdot 3 22(2): 1.5 Rr 2663 yct) = 0.75 for 25653.







- $\alpha_i(b) = b \alpha \leq b \leq -1$ X2(F) = 2 -25F 5-1 y(t) = 2+ + - 26+6-1
- x(cf)= 5 -1 < F<0 261928 -18F80 yce>> 4 ーノミドトロ
- 05452 x1(4) 2 3 a(k) 2 t 0 ≤ k ≤ 2. ALFIS 3-F OFFES.

unit step ")

Continuous



discrete



2) unit ramp

continuou



discrete.



Note: U(L) = d r(L)

rus, suus de

3) unit impulse

Continuous



Properties: "

- $\int_0^\infty x(t) \, g(t) = x(0)$
- 3) x(f) & (f-f0) = x(f0)&(F-f0)
- 3) ] x(F) Q(F-F0) = x(P)

discrete.



- 1) o(1) = u(n) u(n-1)
- وريد) دري ۽ چي وريد)
- 8) 2 xun o(n-no) = x(no)

Scanned by CamScanner

#### 4. Exponential:

Continuous: act) = Acat dissorate.

Where I and a are seal parameters. The parameter I is the amplified of the signal rest at to.

If a >0, xets is said to be decaying exponential.



growing.

discrete:

xun = an for all 'n'

If a > 1, the sequence grows exponentially and if the value is o < a < 1, then this sequence decay exponentially the value is o < a < 1, then of the sequence decay exponentially the value is



decaying.

5. Sinusidal Agnal:

COUPUTOUR

ILLY = ASIN (WL+ 4)

when A-amplitude of the original.

a - angular freq in radle

\$ - Phase angle in rad.



discrete.

cun) 2 A sin (an+4)

argular freq.

- Alli

anil parabolic function

P(
$$\pm$$
)=  $\frac{\pm^2}{a}$  for  $\pm 20$   
= 0 for  $\pm 40$ 



Rudangular pulse: function



Triangular pulk function

$$\Delta_{\alpha}(t) = 1 - \frac{|t|}{\alpha} \quad |t| \leq \alpha$$

$$= 0 \quad |t| > \alpha.$$



Signum function

8inc fundion



Evaluate the following integrals a)  $\int_{-\infty}^{\infty} e^{-\infty t^2} s(t-10) dt$ ( x(4) e (4-10) dt = x(4) / t= to where xcer= e-xt2 and to=10  $\int_{\infty}^{\infty} e^{\alpha t^2} S(t-10) = e^{\alpha t^2} \Big|_{t=10} = e^{-\alpha t^2} \Big|_{t=10}$ p) \( \int\_{5} & &(4-3) = 9 c) [[QH] (0ST+ QH-1) SIUT] qf = foct) wst dt + foct-isint dt  $= \omega st |_{t=0} + Sint |_{t=1}$ 2 COSO+SIN = 1+SIN 1// a wilcommiss prisoned the bollowing Romania a)  $\leq e^{2n} o(n-a)$  $\frac{2}{2}$  x(n)  $e^{(n-n_0)} = x(n)/n=n_0$ when, x(n)= en and no22  $\sum_{n=-\infty}^{\infty} e^{\alpha n} e^{\alpha n} (n-2) = e^{\alpha n} |_{n=2} = e^{\alpha n} |_{n=2}$ (d) \$200-2 ercn+8) b) Z sin an d'un-1)  $= \frac{a^{n-2}}{n=-3}$   $= \frac{a^{n-2}}{n=-3}$   $= \frac{a^{3-2}}{a^{3}} = \frac{a^{5}}{n}$ 

()  $\sum_{n=1}^{\infty} n^2 \sigma(n+2) = n^2 |_{n=-2} = (-2)^2 = 4/1$ 

Scanned by CamScanner

ط

Sketch xcn) = 1+ ucns and then plot its even dodd poets.



$$\alpha_6$$
con.  $\gamma_2$  xcon -  $\gamma_2$ xcon

On Find the energy of the high a) excor: a uc-n)

$$E_{2} = \sum_{n=-\infty}^{\infty} |2^{n}u(-n)|^{2}$$

$$= \sum_{n=-\infty}^{\infty} 4^{n}$$

$$= \sum_{n=0}^{\infty} A^{n} = \sum_{n=0}^{\infty} (A^{-1})^{n} = \sum_{n=0}^{\infty} (\frac{1}{4})^{n}$$

$$= \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{4-1}{4}} = \frac{\frac{1}{3}}{\frac{4}{3}}$$

$$= \frac{4}{3}$$

Let xcn) = 2 [acn+1) - ucn-4)]. Sketch the following sprake Bn.

- a) y((n)= x(n-3)
- b) yacn) = xcnti)
- C) y3(n) = 2(-0+4).
- d) 84(n) = x(-n-2)

find the energy of the signal occo). Also



 $=(\bar{2},1,2,1,2,1,2^2,1,2^3,1)$ ב אניטי.





- · Q1. Sketch the waveforms for the following
  - 2(t)= U(t) U(t-3).

a)



b) X(4) = U(4+2) - 2U(6) + U(6-2)





ull) =1, 0 = t = 3 u(2-3) = 0 u(t) - u(t-3) = 1 - 0 = 1u(t)=1,3 ≤ t ≤ ∞ ١١ = (١-3) u(b)-u(t-3) = 1-1=0/

7(41) - 7(4) + 7(4-2) 4



- YC41)= + -10= 100
  - 7CL) = 0
- 7(41)-7(E) = = 7(6+1) = 1+6 0 = 6 = 1
  - UCF)2 E 7(641)-7(2)=1



d) x(1) = >(4,2) ->(4,1)->(1-1)



Scanned by CamScanner



1 bb 2 7(2) = Slope: 1 -27(2-1) = -2

(1)= - 8 of(1-1)



9) -27(C)



H.W

a) www - uct-2)

p) 1(4) (1(2-f)



A system that follows the superposition thewsen is said to be a linear system.

Reperposition theorem stodes that the lesponse be a coeighted sum of input signal it eated be corresponding the weighted sum of output signal of the system

Han input xits produces an output sits and an ile xets produces an ole facts.
Then the Ryskin is linear if the weighted Sum of ile axits + bxects produces an ole ay, its + byets, when as be an object of an object.

QYICES+ byaces = T [axices + bxaces]

If a system closes not follow the Experposition theorem or does not salify the eqn, then such a system is called non linear system.

there where the phonoing systems are linear or non linear.

۱۹۶۲۶ = ۲۶ مرهرج) ۱۹۲۴۶ = ۲۶ مردج) ۱۹۲۶ = ۲۶ مردج)

= 2 [ax(4)+bx(4)]

T[ax,(t)+bx2(t)] = t [ax,(t)+bx2(t)]

LHS = RHS

1)

.: elm is linos.

b) yer) = = x(+) 4, (4) = ex((4) Yett) = exect) ay(4)+by2(4)= a = x,(4) + b = x2(4) LHS :

RHS: T[ax,(4)+bx2(4)] = eax,(4)+bx2(4)

LHS = RHS . ! S/m ù non linear.

c) Acts = sin 6 t acts.

ay, (t) + by 2(L) = a sin 6 ta (L) + b sin 6 ta (L)

= 8in66 [ax(4)+bx2(4)],

T [ax, (b) + bxe(b)] = 81066 [ax, (b) + bxe(b)]

LHS=RHS . '. S/m & UNCU .

d) H(F) = 26(F).

पत्र, (म) + p त्र है (म) = व यह (म) + p यह (म).

(axith) (axith) (axith) RHS: T Carcy + b xell = (Test). xel) ~ = [ax,ce)+bzace) ?e

LHS = RHS ! NOT linear

e) y(t) = 5x(t) + 4t x(t-1),

ay,(4)+by2(6)= a 8x,(6)+4ad x,(6-1)+5bx2(6)+ 4bt xalt-1).

= 5(ax,(b)+bx2(b))+4t(ax,(b-1)+bx2(b))

BUS: T [ax, (4)+bx, (4)] = 5 (ax, (4)+bx, (4))+4+[ax, (4)/4bx)

LUS = RUS

. 1 s/m û linear -

Slable/censtable 8yskm: |xcm| ≤ m ∠ ∞ - Bounded j/s. | ycm| ≤ m ∠ ∞ - Bounded gp.

BIBO Stability: (Bounded i/p Bounded o/p Stability).

I system it said be be BIBO Stable, if every bounded input produces a bounded output Mathematically  $|x(n)| \le m \angle \infty$ , then for a BIBO Stability the output your must obey the condition. I you  $|x(n)| \le m \angle \infty$ 

For a continuous time system, if  $|x(t)| \leq m \angle \infty$ , then for a 8180 stability the old yets much obey the condition  $|y(t)| \leq m \angle \infty$ 

On these whether the following & ms on Stable or not.

a)  $y(n) = \alpha(n-2)$ .

1 xcnn | ≤ m ∠ ∞ → Bounded 1/p

/x(n-2) / ≤m ~ ∞.

1ycn1 ≤ m ∠ ∞ → Bounded ofp.

Bounded i/p produces Bounded o/p. .: s/m è stable.

p) A(U) = xc-U).

facust = m < 00 -> Bounded ile

1xc-n)/ < m < 0 ->> .

1 yens/ < m < 00 -> Bounded of

.. s/m ù stable.

c) 
$$y(n) = x(n) + n$$
.

 $|x(n)| \leq m < \infty$ 
 $|x(n)| + n|$ ,

As  $n \to \infty$   $|x(n)| = \infty$ .

 $|y(n)| = \infty$ .

Bounded yp does not produce Bounded ofp .: 8/m is constable.

#### Invertibility:

A system is said to be invertible if the input to the dystem can be seenested from the cusped. That is when the original system is considered with its inverse system, the autiful town is inverse system, the autiful town is input acm of the original system.



yet)= 2xet)  $\Rightarrow$  xct)= yet) (invertible 8/8km).

xian = costaisint Re Exacti = cost xalti = costaisint Re Exacti = cost. In Determine whether the following systems are stable.

Static, caused, time invariant, Linear and stable.

1. static/dynamic:

y(0)= x(1)

The output depends on future input. . . 3/m is dynamic.

2. causal/ non causal:

The output depends on plane input . . s/m is non causal.

3. time invaviant/vaviant:

$$y(n-n_0) = x(4(n-n_0)+1)$$

T[x(n-no)] = x(4n+1-no).

yen-no) = T[xen-no)] : slm is bone being

5. linea/non linea

yen= xc4n+1)

GICAD = XICADAI)

Yacm= Tacanti)

HS:  $\alpha H(n) + b 4 2(n) = \alpha x(4n+1) + b x 2(4n+1)$ 

 $\frac{dy(n)+ba_{2}(n)}{dx(n)+ba_{2}(n)} = \frac{dx_{1}(4n+1)}{dx_{2}(4n+1)}$ 

LHS: RHS . . . SIM U Lineas.

5. Stable/ unitable

 $|x(n)| \leq m < \infty \rightarrow Bounded input$ 

12 /2CAn+D/ < m<0

14(m) ≤ m × ∞ → Bounded output

Bounded No moducer Bounded output

, s/m is stoble.

```
P) A(U)= x(U)+ U x(U+1)
    Static | dynamic:
              4(0)= x(0)
                \bar{y}(1) = x(1) + x(2).
 The output depends on present and future input is m is sty.
                                                                                                                                                                                                                         dynamic.
  council non cousal:
 The eyo depends on Juder yo .. The s/m is non coural.
 time invaviant | variant
        y(n-n_0) = x(n-n_0) + (n-n_0) x(n-n_0+1)
  Con - 1 + n + n \times (n - n - n) = \sum_{i=1}^{n} (n - n \times n) = \sum_{i=1}^{n
  yon-no) + Texon-nor]. .: s/m is hime variand.
  linea / non linea:
              GIFUS = SUCUS + U XICUTI)
                Ja(n) = x2(n) + nx2(n+1)
ayun+ byzun = axun+anxun+1)+bxzun+bnxzun+1)
                                                              = ax_1(n) + bx_2(n) + n (ax_1(n+1) + bx_2(n+1))
 T[axi(n)+ bx2(n)] = ax_i(n)+bx2(n)+n (ax_i(n+i)+bx2(n+i))
 RHS:
   LOS=RHS .: S/m i Linco.
   Stable | unitable:
                                                                                       Bounded if Ixcm/< m<0
                 y(n) = x(n) + n x(n+1).
            14m1= 1xm1+ n./xm+1)]
 As ~>0 |y(n) = 0 .: 8/m is so unstable.
   Bus your is bounded tox n = binite.
```

.. s/m is stable for n= bruite.

22 linearly but for the slm described by differential caucalism Step (1): while xill and aloo Skp(2): white weighted sum of its axititionally and publical apply the weighted run of olp ayitty by all works the 3 kg (3) : given differential ear and pour it as ear no . @. Skpa: 1) () = 0, then the slm is linear otherwise non-linear. Idlowing differential egradie linear or not Determine whether the Cen. of dy(t) + 10 y(t) = 2x(t). | b) dy(t)+10 sin y(t)=2x(t) 1)  $x(t) = \frac{1}{2} \left[ \frac{dy(t)}{dt} + 10y(t) \right]$  $(3x(4) + b) = \frac{a}{a} \left[ \frac{dy(4)}{dt} + 10y(6) \right] + \frac{b}{a} \left[ \frac{dy(6)}{dt} + 10y(6) \right]$ which weighted sum of its of the control of the co 3) Apply he weighted sum of of the fiven diff. egn. d [ay, (1) + by2(1)] + 10 [ay, (1) + by2(1)] = 2 [ax, (1) + bx2(1)]  $03(4)+b3(4)=\frac{1}{2}\left[3\frac{d}{dt}8(4)+b\frac{d}{dt}8(6)+1008(4)+1008(4)\right]$  $= \frac{\partial}{\partial a} \left[ \frac{\partial f}{\partial a}(\sigma) + 10A(\sigma) \right] + \frac{\partial}{\partial a} \left[ \frac{\partial f}{\partial a}(\sigma) + 10A^{\sigma}(\sigma) \right]$ O = D .. 8/m ù linear. b) 1) x(16)2 7 [ 98(+) +10 sin 8 (+)] { x2(+) = 1 [ (4)2(+) + 10 sin 8 (+)]

5) Ox((F)+px3(F)= = = [qh(R)+10810A(F)]+= [qh3(F)+10810A(F)] 8) d (ayiust byzus) + 10 sin (ayius + byzus) = & [axiust bxzus]

A)  $0 \neq \emptyset$  .: S/m û non linear.

Static / dynamic On check whether the pollowing dystems and linear / non linear, coural / non coural, time invaviant or time various. a) A(t) 9,8(t) + 31 g/n) + A(t) = x(t) b) d3400) 1-4 d340) + 2 d3(1) + 2 d3(1) = x(1) K (1) A(F) = x(F) + 3 F qA(F) + A(F) = x(F) static | dynamic: The Ayskin is described by deflerential ears. Hence it elynamic. (i) @ x(f) = 9,(f) de y(f) + 3f qa(f) + a(f) = 20(F)= A9(F) 4886F)+3F9A36F)+A8(F) Oxice)+pxxce): O[Aicr gaicr)+3+qaicr)+Aicr)+plance of Asce)  $(\sigma A'(R) + P A^{3}(R)) \frac{q_{5}}{q_{5}}(\sigma A'(R) + P A^{3}(R))^{+} 3F \frac{q_{F}}{q_{7}}(\sigma A'(R) + P A^{3}(R)) + (GA'(R) + P A^{3}(R)) + (GA'(R) + P A^{3}(R))^{-} + 3F \frac{q_{F}}{q_{7}}(\sigma A'(R) + P A^{3}(R))^{-} + 3F \frac$ arcice)+ bx2(E) = (cy,(E) + by2(E)) (a do yich) + b do yell) + 30+ 9719 + 3PF 9810 + 0A1874 PASID = 0, 8'(r), 9,8'(r) - 0P & 8,8'(r) 95,8'(r) + 0 pr 9,8'(r) + 18,9,8'(r) + 301 4 AMB + 3PT 4 ASK) + aBrief) + PASK) = a [ay(w) dy(u)+3+ dy(w)+y(u)]+b[ay(u) dy(w) + a note of des + 12 (F) + 31 aff 1) = S/m is non linear.

18) causal/ non coural

The old depends on the present 1/p only ... caud

4) Tom invarian / variant

The coefficient of the differential ear are hundres of time.

(a) 2 gar + A(T) = 2x(T)

- 1) dynamic
- 2) caused
- 3) Time invarian

4) x(4): dy(4)+ = y(4)

x24)= d 924)+ = y24)

axi(F)+pxx(F)= a [qAi(F)+ = Ai(F)]+ P[qA5(F)+= A5(F)]

5 d(ay, le)+ by all) + ay, le) + B(ax, le)+ by ale) = B(ax, le)+bx all)

axi(1)+px=(e) = ad 8,(e)+pd9=(f) + a 8,(f)+p9=(f).

Scanned by CamScanner

- a) 80 dynamic
- ps amo
- c) time variant

d) 
$$x_1(t) = 8 \frac{dy_1(t)}{dt} + 5 t y_1(t)$$

$$\mathcal{S} \stackrel{q}{=} \left[ (3)^{2} \mathcal{S}_{1}(2)^{2} \mathcal{S}_{2}(2) \right] + \mathcal{S}_{1}(2)^{2} \mathcal{S}_{3}(2) + \mathcal{S}_{3}(2)^{2} \mathcal{S}_{3}(2) + \mathcal{S}_{3$$

$$0 \times ((t) + b) \times ((t) = 80 \frac{dy_1(t)}{dt} + 3b \frac{dy_2(t)}{dt} + 5aby_1(t) + 5by_2(t)$$

$$= 0 \left[ 8 \frac{dy_1(t)}{dt} + 5ty_1(t) \right] + b \left[ 3 \frac{dy_2(t)}{dt} + 5ty_2(t) \right]$$

\* Time domain description: linear time invariant system?

The system that satisfies both linear and home invariant symmetric in collect linear home invariant symmetric in collect linear home invariant symmetric in consolution of the and impulse surposse.

when the input is impute, then the sesponse to the system is known as impute exponse or unit sample exponse of the system.

Given by y(n) = T[x(n)]The output of such a system is

The output of such a system is

The

x(U) = -x(-5) + x(-1) + x(0) + x(1)  $\frac{35 - 10153}{100} = 0$ 

Let the value of impulse punction at also is o'co).

occos interms of impulse hundrion.

$$\chi(n) = -- \chi(-2) \theta(n+3) + \chi(-1) \theta(n+1) + \chi(0) \theta(n) + \chi(1) \theta(n-2) + \dots$$

$$accu)=\sum_{\infty}^{k=-\infty}ack)Qcu-k)$$

$$W(K,T) = T[x(x)] = T[\frac{2}{K^2-2}x(K)d(x)-K]$$

$$z \underset{K=-\infty}{\overset{\text{ge}}{\approx}} x(x) h(n-K).$$

= acm + hcm.

$$x = -\infty$$
  $x = -\infty$  convolution  $x = -\infty$ .

Scanned by CamScanner

|T[&(n-K)]= h(n-K)

## Properties of convolution duro:

- 1) commudative: sun+ +(n) = h(n) + x(n)
- a) Dishibulive: xcm + [h,cn)+h,cn) = xcn) + h,cn) + xcm +h,cn)
- 3) x(n) + o(n-k) = x(n-k).
- 4) xcn) + o(cn) = xcn).
- 5) O(n-K) # o(n-m) = o (n-cm+k))

On. Find the convolution during two sequences  $\alpha_1 = (2, 2, 3)$  and  $\alpha_2 = (2, 1, 4)$ 

24(n) in terms of impulse: 1.o(n)+2o(n-1)+3o(n-2).
24(n) in terms of impulse: 2o(n)+1o(n-1)+4o(n-2).

$$x_{1}(n) + x_{2}(n) = [g(n) + 2g(n-1) + 3g(n-2)] + [2g(n) + g(n-1) + 4g(n-2)]$$

- = \( \text{dim} \dim \text{dim
- = &&(m) + &(m-1) + 4 &(m-2) + 4 &(m-1) + & &(m-2) + 8 &(m-3) + 6 &(m-2) + 3 &(m-3) + 12 &(m-4).
- = 20m) + 5dm-1) + 120m-2) + 110m-3) + 120m-4).

Venitication:

$$a_{1}(m) + a_{2}(m) = (2, 5, 12, 11, 12)$$

Chraphical method. 222 cu) = (3,1,4) x(cm= C/, 2,3) K=-0) C2(N-K). x2(-K+N) aricus i aricus: 1 sca (A-K)  $A(1) = \int_{0}^{\infty} x'(rx) \cdot x^{3}(1-rx) = rx + 3x3 = 2$ y(2)= & x,(K) x2(2-K) = 1x4+ 2x1+3x2 = 12 8(8)= = x1CK) x2(3-K) = 2x4+3x2 = 11 JLA) = \$ (4-K) = 12. A(B)= = 30 (K) x3(2-K) .; yun)= (2, 5, 12, 11, 12)

Crraphical method: (81eps)

8dep x(cn) = (1,2,3)  $x_2(n) = (2,1,4)$ 

8tep(1): x(cn): Slowling point o

O foriog portuets: cases

yen: starting point 0+0 =0

8, 60 (5): [m3/4 (x(cv))=3

leight ( 22(n) )= 3

: Length (y(n)) = N1+N2-1 = 6-1 = 5.

Blep (3): Express the xich of xech) and xech) in terms of K.

step (4): white the wowoln sum. eqn:

 $x_1(n) + x_2(n) > \overset{\sim}{\geq} x_1(k) x_2(n-k),$ 

 $y(0) = \sum_{k=-\lambda}^{\infty} x_i c(k) x_2 (-k).$ 

y(1) > 2 21CK) 22 (1-K)

g(2) > 2 x1(k) x2(2-k)

7(3) = & x1(K) x2(3-K)

y (4)2 & x1(K) = (4-K).

8kp (5): plot y(n).

A LTI System has impulse eusponse him = uin - uin-10). Determine the output of the Rystom when the input is the electorgular pulse defined  $\alpha(x) = \alpha(x-x) - \alpha(x-x)$ . 四, 23 - 9,1000 hun: 0,2. -. 9 XCK) 1 p(U-K) y(0) = = x x(x). h(-x) = 0 y(1)2 = x(K) h(1-K) = 0. 16(2-K) g(n) = xck) h(2-K) = 1

g(3) 2 ≥ x(a) h(3-k) = 2.

Continuous lime LTI system: Convolution Integral of impulse sespons

integral form a pollows:

$$\frac{\lambda^{2}-\infty}{\lambda^{2}-\infty} = L(7) =$$

$$= \int_{\mathbb{R}^{2}} x(x) \perp g(f-x) \, dx = \int_{\mathbb{R}^{2}} x(x) \, \mu(f-x) \, dx$$

Properties of Convolution Integral:

Commutative:

- 1) x(+) + b(+) = b(+) \* x(+)
- 2) Distributive:  $x(t) + [h(t) + h_2(t)] = x(t) + h_1(t) + x(t) + h_2(t)$
- 3) X(+) + &(+-K) = x(+-K).

On. Find the consolution of 
$$x(y) = e^{-at}u(t)$$
 and  $x_2(y) = e^{-bt}u(t)$ .

 $x(t) * x_2(t) = \int x(t) x_2(t-y) dx$ .

4. Give find the gens if acceptance and house with 
$$y(t) = \int_{0}^{\infty} a(x) h(t-x) dx$$

$$= \int_{0}^{\infty} u(x) \int_{0}^{\infty} u(t-x) dx$$

$$= \int_{0}^{\infty} u(t-x) \int_{0}^{\infty} u(t-x$$

an Find the convolution of acts = E and hets = uets.

Representation of LTI Systems: \* Parallel x coscade

### 1) Parallel connection of two Ryskms:

Consider two LTI systems with impulse lesponses hill) and hell) connected in parallel as shown in bq. given below.

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

how the page of th = x(L) + h(L) + x(L) \* h2(L), = Substitule the integral supresentation you each Convolution 10000 1000 ( 8,64)= x(4) \* h,(4) = (x(x) h,(4-4) dz fact): ICE) \* hall = ) x(x) h(1-2)d2

: 8(1)= \( \tau \) \( \tau \) \( \tau \) \( \tau \) \\ \(

で ないと) [h, ct-な) + h を(t-な)] dな.

ρ xcx) hct-2), de.

x(4) + h(4) = x(4) + [h(4) + he(4)]

xce>\*hill) + xcl> \* back) = xd) + [hill) + back) 1114 for discrete bom Agral.

x(n) + h(n) + x(n) + ha(n) = x(n) + [h(n) + he(n)].

Scanned by CamScanner

Proof: xcn & hich) + xcn) & hach)

$$= \underset{K=-\infty}{\overset{\sim}{\boxtimes}} x(K) h_1(n-K) + \underset{K=-\infty}{\overset{\sim}{\boxtimes}} x(K) h_2(n-K)$$

$$= \sum_{K>-\infty}^{\infty} \alpha(K) \left[ h_1 (n-K) + h_2 (n-K) \right]$$

= 
$$\frac{\kappa_{2-\omega}}{\kappa_{2-\omega}}$$
 =  $\frac{\chi(n)}{\kappa_{2-\omega}}$  =  $\frac{\chi(n)}{\kappa_{2-\omega}}$  =  $\frac{\chi(n)}{\kappa_{2-\omega}}$  =  $\frac{\chi(n)}{\kappa_{2-\omega}}$  [h(n) + h2(n)].

#### 2) Coscade connection of been bysiems,

Consider boo systems connected in consade with their impulse expones hill and help as shoon in high other below.

The fruit hill help yell.

= xcm) \* hcm) = xcm) \* [nch) \* hacn)]

The impulse suports of a consoder connection of the individual impulse suports.

## Properties of LTI Systems:

1) commutative property:

(1) \( \text{\text{x(L)}} \) \( \text{\text{the perty}} \) \( \text{\text{commutative}} \) \( \text{\text{property}} \) \( \text{\text{commutative}} \) \( \text{\text{ch}} \) \( \text{ch} \) \( \text{\text{ch}} \) \( \text{ch} \) \( \text{\text{ch}} \) \( \text{ch} \) \( \text{ch}

Proof: xct) + h(t)= 1 xcx) h(t-2) d2

Pw 4-2=04p=-1 4p=-dp

 $\therefore \text{ act) * p(f) = -2 x(f-b) p(b) qb. = 2 p(b) acf-b) qb$  = p(f) \* x(f).

e) Distributive property: Reg 25-4) = [[5,42+12,45]= 2642+12] = 2642+12

3) Associative property: zers + hich + hack) = sets + [hich + hack]

proof: Refer coucade connection of two system.

4) Systems with and without memory:

Static ( minimulks): 0/9 cm any time depends only on the solved 1/9 and such a system has the form: h(+) = KS(+), .: h(+) + 0 for + +0 and such a system has the form: h(+) = KS(+), .: h(+) + 0 for + +0

cound: h(x)=0 fox t<0

non council: h(b) +0 bx tx0

 $= \sum_{K=-0}^{\infty} h(K) \times (N-K).$ 

For the system to be minery less, yen must depend only on sun and conner depend on second for  $k \neq 0$ . This condition implies that h(k) = 0 for  $k \neq 0$ . Hence LTI system is meanwayled and only if h(k) = cel(k), where c = aubitrary constant for continuous time systems, h(x) = cel(x).

Coural System: The output of a coural system depends only on post or present value of the i/p.  $y(n) = \sum_{k=-\infty}^{\infty} h(k) x(n-k)$ . In order for y(n) to depend only on post or present value of the input, we require  $h(k) \ge 0$  by k < 0. Hence for a coural  $y(n) \ge 0$  by  $y(n) \ge 0$ 

114 For a causal continuous time 8/m, 1002220 Por 2 <0 and the opp of a causal system is thus expressed as the consolish hope yet) 2 There rect- 27 da.

#### Stability in terms of impalse us ports:

According to BIBO Stability critics, for a system to be stable, it how to produce bounded of our que bounded if the cu consider on it xct) that how a bounded magnitude txct) 1 \le m \lambda

yet: T [xet)] W.K.T YLL) = xCE) & hCE) = hCE) & xCE). (Commutative property) 1947 = / Jh(2) x(6-2) dr/ = [] | h(x) | |x(t-x) | dx. = [] | h(x) | m d2.

(yel) / = m < 00.

 $\int_{\infty}^{\infty} |h(x)| \, m \, dx \leq m \times \infty.$ .. Sihanldr & oo

.: the 8/m i stable if the impulse exponse it absolutely integrable.

14 for a discrete time ofm, & lhck) <0. ie the 8/m is stable if the impulse exponse is absolutely deminable. Invertible System:

x(t) \* (h(t) \* b'(t)] = x(t) \* e(t) = x(t) ie h(b) \* h7(4) = o(4)

# Differential and Difference equation representations

Differential equations are used to represent continuous time systems and difference equal are used to expresent discrete time systems.

The general form of a linear contain - coefficient differential earn is  $\frac{1}{20} \frac{1}{20} \frac{$ 

where xct) is the i/p to the system and yct) is the output.

The general form of a linear constant, different earn is  $\underset{K:0}{\text{O}} = \underset{K:0}{\text{M}} b_K \times (n-K)$ .

The integer N is termed as the order of the differential or difference ean, and correspond to the difference involving the diplom outpast.

On. Write the differential earn. for the system given below.

differentiating poly eigh of min to F

order , N = 2/1

example of a scool order difference an Give ean.

$$A(U) + A(U - U) + \frac{1}{4} A(U - S) = x(U) + 3x(U - U)$$

Total euponse = zero i/p euponse + zero state eupons. (natural euponse) + (Forced susponse) 80 hulion of homogeneous Apre) + AbcFJ earu (Art) Paricular solo.

Continuous time. Discrete time pour culai solo. Posticular soln. 1/b eat k −ał K'008 55 U + REW 55 U തലവ KIOS MF+ KOSIUMI (mt)

les ponse of the system described the total by me differential egn: dayer) + 5 dyer) + 69 (4)

CHIX 44 CHIZ When input is act) = et uce) and the initial condition

 $\frac{d^{2}y(t)}{dt^{2}} + 5 \frac{dx(t)}{dt} + 4x(t) \longrightarrow 0$ Natural response:

959(5) + 2 qh(F) + eh(F) = 0 -> @

Nº 45 X + 620 characteristic ean in (1+2) (1+3)=0 1=-2, 1=-3 homogeneous ear: Yhlt) = c, e + c2 e + ... 33  $9h(1) = c_1 e^{-2k} + c_2 e^{-3k} \longrightarrow 3$ 80/n: 4/6)= c, + c2 = 2. -> 3(a)  $\frac{dy(t)}{dt} = -2c_1e^{2t} - 3c_2e^{3t}$  $\frac{dy(t)}{dt}$  = -2c,-8c2=0  $\longrightarrow$  3(b). 2c, +212=6 Bolving 3(a) 4 3(b), we get -2C1 -8C2 = 0 - c2 = 6 => c2 = -6 , : C1= 9. natual AUCF) = 80/10. of APCF)  $y_{n(t)} = 9 e^{3t} 6 e^{3t} \longrightarrow \textcircled{1}$ For i/p et, the paintible soln is ypet) = Ket of dypet) = -Ket of old entirely the differential ear. Forced suponse: gus an Q in Q  $\Rightarrow \frac{d^2yp(d)}{dt^2} + 5\frac{dyp(d)}{dt} + 6yp(d) = \frac{dt}{dt} + 4x(d)$ Ket = 5 ket = 6 ket = - et + 4 et | x(t) = et 2 ket = 20-te K= 3/2 = 1.5. .. ypct)= 1.5 et -> 6 Posual euponer = homogeneous ean+ pouriodas solo. 4 (ch) = c, Edy (2 = 31 + 1.5 = + -> 7)

Scanned by CamScanner

yf (1) 0/10 = C1+C2+1.5=0 ( Zero state expone) dr(4) = -2 c, = 2+ -3 c, = 3+ 1.5 e+ 50  $\frac{dr(t)}{dt}\Big|_{t=0} = -2c_1-3c_2-1.5 = 0. \longrightarrow 8(b)$ 80 luing € (a) and € (b), we get e2=1.844=3 1: yr(4)= -3e-26+1.5e36+1.5e ": Tow suppose = yn(+)+ yr(6) yu) = (9 = 2 = 6 = 3) + - 3 = 2 + 1.5 = 1.5 = 1 y(1) = 6=2+ 4.5=3+1.8=t By using the classical method, so live Question of the inerval conditions are generally the input is  $e^{-3t}$  and  $e^{-3t}$  d ( 4 dyce) + 4 yce) = d ( d) + xce) if the initial conditions are yot) = 9 , dylo)=5 dry(1)+ 4 dy(1)+4 y(1) = dx(1)+x(1)->(1) chowa eqn: 22+41+4=0. (1+2) = 0 1=-2,2 Repealed sook homogeneous ean: Yhit)= (c1+c2E)exE yhu) = (c1+(21) =2 → 2 8010: 8400/t=0 = C1 = 9/4 dynu) = - 29 e 2 + ca[tre 2 + e 2 ]

\$\n + \$\n = \n.n

$$\frac{dg_{n}(u)}{dt}\Big|_{t=0} = -2c_{1} + c_{2} = 5$$

$$= -$$

. On. Find the current in the RL circuit given below for an applied vollage xct) = cost volls assuming normalized values R=10, L=14 and the initial condition, y(0)=2A

$$Ry(L) + L \frac{dy(L)}{dL} = x(L).$$

$$A(F) + \overline{qA(F)} = \overline{x(F)} \longrightarrow 0$$

$$\lambda + 1 = 0 \Rightarrow \lambda = -1$$

homogeneous ean: 
$$y_h(t) = c_1 e^{\lambda t} \Rightarrow y_h(t) = c_1 e^{\frac{t}{\lambda}} \Rightarrow 0$$
  
soln:  $y_h(t)|_{t=0} = c_1 = 2$ 

foxud eusp!

For the yp occess cost, the particular folin is 
$$4p(2) = K_1 \cos 2 + K_2 \sin 2 \longrightarrow 4$$

=inq coeff. of obst 
$$\Rightarrow$$
  $K_2 + K_1 = 1$ 

= inq coeff. of obst 
$$\Rightarrow$$
 -  $K_1 + K_2 = 0$ .  
= inq coeff. of sint  $\Rightarrow$  -  $K_1 + K_2 = 0$ .

of sint 
$$\Rightarrow -K_1 + K_2 = 1 \Rightarrow K_2 = 1$$

Folice) lesp = homogeneou ean+ pouticulou soln ie 
$$y_1(t) = y_2(t) + y_3(t)$$
  
 $y_1(t) = C_1 e^{-t} + \frac{1}{2} ast + \frac{1}{2} sint \longrightarrow \textcircled{3}$ 

$$y_{(t)}|_{t=0} = C_1 + \frac{1}{2} = 0 \implies c_1 = -\frac{1}{2}$$
  
 $y_{(t)}|_{t=0} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \cos t + \frac{1}{2} \sin t$   
 $y_{(t)}|_{t=0} = y_{(t)} + y_{(t)}$ 



Another method: ( For 1st order diff. ean).

$$\frac{dy(t)}{dt} + y(t) = \cos t$$
  $\frac{dy}{dt} + py(t) = 0$ .  
Where  $P=1$  and  $0 = \cos t$ 

Integration jaches IF = et = et

Je cospfor



Periodic Eignal representation by Fourier Series:

- Continuous time Fourier Series (CCTFS).

A continuous time signal sects is said to be periodic if there is a positive non zero value of T for which

x(4+7) = x(4) for all 4.

where T is called fundamental period and  $\omega_0 = 2\pi$  is called fundamental radian frequency. \*\* Non periodic signals cannot be represented by Fourier series but can be represented by Fourier hansform.

Different forms of fourier series representation:

- -> Trigonometric Fourier Errics.
- -> Complex exponential Fourier Erres.

## 1) Trigonometric fourier enes:

Consider a continuous bour riginal XHD.

This Byonal can be split up as sines and cosines
of hundamental frequency we and all of its

houmanics and expressed as given below:

 $act = ao + \stackrel{\infty}{\leq} a_k \cos k \omega_o t + b_k \sin k \omega_o t$   $\longrightarrow (1)$ 

Eqn (1) is the Fourier series representation of an arbitrary signal xxx in trigonometric form.

In eqn (1), as corresponds to the zeroth houmanic or Dc value. The expression for the
Constant learn as and the amplitudes of the
houmanic as be derived as

$$a_0 = \frac{1}{T} \int x(t) dt \longrightarrow (2)$$

$$QK = \frac{2}{T} \int x(t) \cos K \omega_0 t dt \longrightarrow (3)$$

when  $T = \frac{2\pi}{\omega_0}$  is the fundamental period.

TE - 72 6 7/2.

To prove the periodicity of xell:

The periodicity of x(1) is proved if x(1) = x(1+T).

bkz 2 [ ] xe(t) Gnkwoldl + Jxo(l) Gnkwoldl]

W. H. T odd hundron x odd hundron = even hundron even providion x even providion = even providion even hurbaon x odd hurbaon = odd hurban. For any even function xell), The rell dt = 2 xell) dt = 2 (8) For any odd hundrion, xo(1), 7/2 xo(1) dt = 0 (9) If xCE) is an even function, then xo(1) = 0 ie >CCL)=2/4  $(5) \Rightarrow (a_0) = \frac{1}{\tau} \int_{-\tau/2}^{2} x_e(t) dt = \frac{2}{\tau} \int_{-\tau/2}^{\tau/2} x_e(t) dt = \frac{2}{\tau} \int_{-\tau/2}^{\tau/2} x_e(t) dt$ (6) => an = 2 The xe(4) coskcool de (ax)2 4 T/2 act) coskwol db -> (11) (4) = = = = = T xell 800 Kwot dt CD. K.T even x odd = odd { Todd hundron dt = 5 If xees is an odd hundion, then xell)=0, lexu=xb  $(5) \Rightarrow (0)^{2} + \int_{-\pi/2}^{\pi} 2c_{0}(12) d1 = 0 \quad (hom (q_{1})) \longrightarrow (13)$ (6) => ax = 2 T/2 xo(2) askwol dl W. K. T odd x even = odd & \_T/2 odd hindion df =0. .: (ak)=0 -> (14) (2) => (2) 2 Trousenxwordt = 4 Jacks ein koordi

Conclusion:

Thus the Fourier series expansion of an even periodic hundrion Contains only comme terms and a constant and the power series expansion of an odd periodic fundions contains only one terms -> odd gymmety.

Hay were symmetry: A periodic signal which salisty The condition  $x(t) = -x(t \pm T/2)$  is said to have a half wave symmetry.

Complex Exponential Focuser Eries!

By using Euler's identity (e'= cosa+jsina), the complex 8 musoids can always be expressed in le all = 2 x(k) e is called Byntheris. terms of exponentials. ean. when xck) is called complex former coefficient and it expressed at X(K) = 4 [X(L) e dl

ù called analysis ean.

y benogic maniform arres and its fourier coefficient XCK) can be symbolically supremed as all (F8) XCK).

for thi-On. Find the Ingonometric Fourier series periodec Egnal xct) shown below.



$$T = A$$

$$Coo = \frac{2\pi}{T} = \frac{2\pi}{A} = \frac{\pi}{2}$$

from the figure, xct) = xc-E) which Shows that the given signal in even. ·; pK = 0.

W. K. T R(LE) = 
$$Q_0 + \sum_{K\geq 1}^{\infty} Q_K \cos k \omega_0 L + b_K \sin \omega_0 L$$
  
=  $Q_0 + \sum_{K\geq 1}^{\infty} Q_K \cos k \omega_0 L$ 

$$a_{0} = \frac{1}{T} \int x(t) dt$$

$$= \frac{1}{T} \int x(t) dt$$

$$= \frac{1}{T} \int x(t) dt$$

$$= \frac{1}{T} \int x(t) dt$$

$$\frac{1}{4} \int_{-1}^{\infty} \alpha(t) dt + \int_{-1}^{\infty} \alpha(t) dt = -1 \quad \text{for } -1 \leq t \leq 1$$

$$\frac{1}{4} \int_{-1}^{\infty} \alpha(t) dt + \int_{-1}^{\infty} \alpha(t) dt = -1 \quad \text{for } 1 \leq t \leq 3$$

5

$$= \frac{1}{4} \left[ t \right]_{-1}^{1} + \left[ -t \right]_{1}^{3} = \frac{1}{4} \left[ 1 - (1) + (-3) - (1) \right]$$
$$= \frac{1}{4} \left[ 2 + -2 \right] = 0$$

$$a_{K} = \frac{2}{T} \int_{T}^{T} x(t) \cos k \omega_{0} t dt$$

$$= \frac{2}{4} \int_{T}^{3} x(t) \cos k \frac{\pi}{2} t dt$$

$$= \frac{2}{4} \int_{T}^{3} x(t) \cos k \frac{\pi}{2} t dt$$

$$= \frac{1}{2} \left[ \int_{T}^{3} \cos k \frac{\pi}{2} t dt \right] - \left[ \frac{2}{K\pi} \sin k \frac{\pi}{2} t \right] \frac{3}{2}$$

$$= \frac{1}{2} \int_{K\pi}^{3} \left[ \frac{8\pi}{K\pi} k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t \right]$$

$$= \frac{1}{2} \int_{K\pi}^{3} \left[ \frac{8\pi}{K\pi} k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t \right]$$

$$= \frac{1}{2} \int_{K\pi}^{3} \left[ \frac{8\pi}{K\pi} k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t \right]$$

$$= \frac{4}{2} \int_{K\pi}^{3} \left[ \frac{8\pi}{K\pi} k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t + 8\pi k \frac{\pi}{2} t \right]$$

$$= -\sin k \frac{\pi}{2}$$

$$= -\sin k \frac{\pi}{2}$$

$$= -\sin k \frac{\pi}{2}$$

Q<sub>K</sub> can also be found out by using

Rymmetry Condition fine x(L) is even,

$$a_K = \frac{A}{T} \int_{-\infty}^{\infty} x(L) \cos k \cos t dL$$

$$= \frac{A}{T} \int_{-\infty}^{\infty} x(L) \cos k \cos t dL$$

$$= \int_{-\infty}^{\infty} x(L) \cos k \cos t dL = \int_{-\infty}^{\infty} a_{0} \sin k \pi dL + \int_{-\infty}^{\infty} a_{0} \sin k \pi dL$$

$$= \left[\frac{a_{0}}{k\pi} \sin k \pi dL\right]_{-\infty}^{\infty} - \left[\frac{a_{0}}{k\pi} \sin k \pi dL\right]_{-\infty}^{\infty}$$

$$= \frac{2}{K\pi} \left[ 80 \frac{K\pi}{2} - 60 0 - 80 \frac{K\pi}{2} + 60 \frac{K\pi}{2} \right]$$

$$= \frac{2}{2} \left[ 2 80 \frac{K\pi}{2}$$

Bh. Find the Ingonometric Power series for XU) Shows below. periodic bignal



T=2, co= 2 = T from the bogue,  $\alpha(H) = -\alpha(-E)$ . The signed is an odd eignal.

$$\therefore Q_0 = 0 \qquad Q_K = 0.$$

.: 
$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos k \omega_0 t + b_k \sin k \omega_0 t$$
.

$$= 2 \left[ t \left( - \frac{\cos \kappa \pi t}{\kappa \pi} \right) - \int_{1}^{1} \left( - \frac{\cos \kappa \pi t}{\kappa \pi} \right) dt \right]_{0}^{1}$$

$$= 2 \left[ \frac{1}{K\pi} \cos k\pi t + \frac{1}{K\pi} \frac{\sin k\pi t}{K\pi} \right]_{0}^{1}$$

$$= 2 \left[ \frac{1}{K\pi} \cos k\pi t + \frac{1}{K\pi} \frac{\sin k\pi t}{K\pi} - (0+0) \right]_{0}^{1}$$

$$= -\frac{2}{K\pi} \cos k\pi t + \frac{1}{K\pi} \frac{\sin k\pi t}{\sin k\pi} - (0+0) \right]_{0}^{1}$$

$$= -\frac{2}{K\pi} \cos k\pi t + \frac{1}{K\pi} \frac{\sin k\pi t}{\sin k\pi} - (0+0) \right]_{0}^{1}$$

$$= -\frac{2}{K\pi} \cos k\pi t + \frac{1}{K\pi} \frac{\sin k\pi t}{\sin k\pi} - (0+0) \right]_{0}^{1}$$

$$= \frac{2}{K\pi} \cos k\pi t + \frac{1}{K\pi} \frac{\sin k\pi t}{\sin k\pi} - (0+0) \right]_{0}^{1}$$

$$= \frac{2}{K\pi} \cos k\pi t + \frac{1}{K\pi} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2} \sin k\pi t + \frac{1}{2} (-\sin k\pi t) + \frac{1}{2}$$



T= QTT and Coo=  $\frac{2\pi}{7}$  = 1.

from the figure, the signal is reither odd from even;

80 the coefficients as, ask and because to be evaluable.

For a ramp signal the slope is  $\frac{1}{2\pi}$   $\frac{1}{2\pi}$ .  $\frac{1}{2\pi}$   $\frac{1}{2\pi}$ 

$$Q_{0} = \frac{1}{T} \int_{0}^{T} x(t) dt$$

$$= \frac{1}{\sqrt{11}} \int_{0}^{T} \frac{1}{\sqrt{11}} dt = \frac{1}{\sqrt{112}} \left[ \frac{1}{\sqrt{2}} \right]_{0}^{2T}$$

$$= \frac{1}{\sqrt{112}} \left[ 4\pi^{2} - 0 \right] = \frac{1}{\sqrt{112}} 4\pi^{2} = \frac{1}{\sqrt{2}}.$$

$$Q_{K} = \frac{2}{\sqrt{112}} \int_{0}^{T} x(t) \cos \kappa \omega_{0} t dt$$

$$= \frac{2}{\sqrt{112}} \int_{0}^{T} \frac{1}{\sqrt{112}} \cos \kappa t dt \qquad | \omega_{0} = 1 \rangle$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{1}{\sqrt{112}} \sin \kappa t - \frac{1}{\sqrt{112}} \cos \kappa t \right]_{0}^{2T}$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{1}{\sqrt{112}} \sin \kappa t - \frac{1}{\sqrt{112}} \cos \kappa t \right]_{0}^{2T}$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{2\pi}{K} \sin 2\pi K + \frac{1}{\sqrt{2}} \cos 2\pi K - \left( 0 + \frac{1}{\sqrt{2}} \cos 0 \right) \right]$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{2\pi}{K} \sin 2\pi K + \frac{1}{\sqrt{2}} \cos 2\pi K - \left( 0 + \frac{1}{\sqrt{2}} \cos 0 \right) \right]$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{2\pi}{K} \sin 2\pi K + \frac{1}{\sqrt{2}} \cos 2\pi K - \left( 0 + \frac{1}{\sqrt{2}} \cos 0 \right) \right]$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{2\pi}{K} \sin 2\pi K + \frac{1}{\sqrt{2}} \cos 2\pi K - \left( 0 + \frac{1}{\sqrt{2}} \cos 0 \right) \right]$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{2\pi}{K} \sin \kappa t dt - \frac{1}{\sqrt{2}} \left( -\frac{\cos \kappa t}{K} \right) - \left( \frac{\cos k t}{K} \right) \right]$$

$$= \frac{2\pi}{\sqrt{112}} \left[ \frac{1}{\sqrt{2}} \cos \kappa t + \frac{1}{\sqrt{2}} \sin \kappa t \right]$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{1}{\sqrt{2}} \cos \kappa t + \frac{1}{\sqrt{2}} \sin \kappa t \right]$$

$$= \frac{1}{\sqrt{112}} \left[ \frac{1}{\sqrt{2}} \cos \kappa t + \frac{1}{\sqrt{2}} \sin \kappa t \right]$$

$$= \frac{1}{2\pi^2} \left[ \frac{-2\pi}{K} \cos 2\pi K + \frac{1}{K^2} \sin 2\pi K - \left(0 + \frac{1}{K^2}$$

On Obtain the exponential fourier series representation for the waveform acts shown in figure.



from the figure 
$$T = 2$$
,  $\omega_0 = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi$ 
 $\times (K) = \frac{1}{T} \int x(t) e^{-ik\omega_0 t} dt$ 

$$= \frac{1}{2} \left\{ \left[ \frac{e^{-jk\pi t}}{e^{-jk\pi}} \right]_{0}^{1} - \left[ \frac{e^{-jk\pi t}}{e^{-jk\pi}} \right]_{1}^{2} \right\}$$

$$= \frac{1}{2} \left\{ \left[ \frac{e^{-ik\pi}}{e^{-ik\pi}} - \frac{e^{0}}{-ik\pi} \right] - \left[ \frac{e^{-ik\pi\pi}}{e^{-ik\pi}} - \frac{e^{ik\pi}}{e^{ik\pi}} \right] \right\}$$

$$= \frac{1}{2ik\pi} \left[ 2e^{-ik\pi} \left[ 2e^{ik\pi} \left[ 2e^{ik\pi} \right] \right] \right]$$

$$= \frac{1}{\sqrt{1 + 1}} \left[ 1 - e^{-jk\pi} \right] = \frac{1}{\sqrt{1 + 1}} \left[ 1 - \left( \cos k\pi - j \sin k\pi \right) \right]$$

$$= \frac{1}{i k \pi} \left[ i - \cos k \pi \right] = 0, if k is even.$$

$$= \frac{2}{i k \pi} i k is odd.$$

Scanned by CamScanner

Find the Fourier series supresentation for the

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

$$= \int_{-j\kappa}^{\gamma_4} 1 \cdot e^{-j\kappa\omega t} dt = \left[ e^{-j\kappa\omega t} \right]_{-\gamma_4}^{\gamma_4}$$

$$= \frac{1}{-j\kappa\omega} \left[ e^{-j\kappa\omega} - e^{-j\kappa\omega} \right]$$

$$= \frac{1}{3k\omega} \approx \sin k \frac{\omega}{4} \quad (: \omega = \alpha \pi)$$

an Determine the fourier senes sepresentation of 9.

Sanon work.

period = T ,  $\omega = \frac{2T}{T}$ 

XCK) = + [xch) e -jkwt dt = I j'aus ejkwt de

 $= \frac{1}{4} \int_{-T_s}^{T_s} e^{-j\kappa\omega t} dt = \frac{1}{4} \left[ \frac{e^{-j\kappa\omega t}}{-j\kappa\omega} \right]_{-T_s}^{T_s}$ 

 $= \frac{1}{-TJKW} \left[ e^{-JKWTS} - e^{JKWTS} \right]$   $= \frac{1}{TJKW} \left[ e^{JKWTS} - e^{JKWTS} \right]$ 

= RSINK 21 IS

X(4)= ZX(K) e

= Z & SINK SITTS & JKWZ = I Z SINK SITTS ENKLY THE

Amplitude and phase Spectra of a periodic Signal.

X(K) = A(K) + iB(K)

Magnitude, |x(K)| = |AP(K) + BP(K)

Phase, |x(K)| = tan' (B(K))

A old of |x(K)| versus k is called amplitude

A plot of 1xcks/ versus k is called amplified spectrum and a plot of 2xcks) versus k li called phase spectrum of periodic signal.

Properties of Fourier Series:

1) linearity:

y x(t) ←FS × (K) and y(t) ←FS Y(K)

Then Z(L) = ax(L) + by(L) (FS) Z(K) = ax(K) + by(K).

Proof: Z(K) = + fz(t) e-jkworl dt

= 
$$+\int_{T} a \propto (L) e^{-jk\omega_0 t}$$
  
=  $+\int_{T} a \propto (L) e^{-jk\omega_0 t}$ 

= axck) + byck).

2) Time Shift!

If 
$$x(t) 
ightharpoonup (K) = x(t-t_0) 
ightharpoonup (K) = e^{JK\omega_0 t} x(K)$$

Pau 
$$\lambda = t - to$$
 $d\lambda = dt$ 
 $Z(K) \ge \frac{1}{4} \int_{-\infty}^{\infty} x(\lambda) e^{-jk\omega_0 \lambda} d\lambda$ 
 $= \frac{1}{4} \int_{-\infty}^{\infty} x(\lambda) e^{-jk\omega_0 \lambda} d\lambda$ 

U α(L) ←FS × (K)

then z(L) = x(aL) (FS) z(K) = x(K).

.... 5) Convolution: y(t) ←FS ×(k) and y(t) ←FS Y(k) Then Z(t) = x(t) @ y(t) < FS Z(k) = TX(k) Y(K). Proof: ZCK) = + [ZCt) e-jkwot dt = + [ x(t) @ y(t) e wot de W.K.T X43 & YH) = [x(1) y(+-1) dl .: Z(K) = I f [ sall) g(t-L) d1] = JKwot dt changing the order of integration Z(K) = + fxch fyct-i) e-ikwot dt dl Pu m = t-1

 $\frac{dm}{dt} = 1 \implies dm = dt$ 

.: Z(K) = I (x(l)) f y(m) = ikwo (m+l) elm dl = I sall e-ikwolds sum e-ikwom dm

T l=T

X(K)

TY(K) = XCK) TYCK)

6) multiplication or modulation y x(t) (FS) x(w) and y(t) (FS) Y(K) then ZCE) = XCE). YCE) (FS) ZCK) = XCK) \* YCK).

pool: SCK) = I I SCF) Enkmop of = + [ x(+). y(F) = jkmof df.

We have the Synthesis egn: x(1)= 2 x(1) = ilwot

·; Z(K)= + | [ = x(1) = j(mot] Alt) = ojkmoje changing the order of Rummalion and integration Z(K) = + 1 = x(1) (y(1) = -i(K-1) wordt = = x(x) y(x-1) = x(x) \* y(x); 7) Parseval's theorem: 4 x(4) (FS, x(x), then the average power, 6= + 2 | x(x)| gy = = | x(x)| (froof: b= + ) (x(f)) g df = + [x(f) x\* (f) df We know that x(t) = & x(K) eikwoł Taking Conjugate on both side 2 (t) = 2 x\*(K) = - ik wot i'average power, P= + 1 x(+) [ = xcx) = ikwot] dt changing order of summation and integration PZ Z X\* (K) L) x(L) edkwol dt = \(\frac{1}{2}\) \(\frac{1}{2  $= \left| \frac{2}{\kappa_{2}} | x(\kappa) |^{2}$ Yowen spectral density:

A plas of 1xcx) & versu k is known power spectral density.

Fourier representation for non periodic organals:

- Continuous time fourier transform (CTFT)

The CTFT of a non periodic signal act.)  $\dot{U}$  given by  $X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \longrightarrow \text{Analysis eqn.}$ The inverse CTFT of  $X(\omega)$  is given by.  $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(\omega) e^{j\omega t} d\omega \longrightarrow \text{Synken's eqn.}$ 

Amplitude and prax Spectra:

A plot of 1 x cws versus or i called magnified spectrum and a plot of 2 x cws versus or i called phase spectrum.

On. Find the Focusier transform of the signal x(1) = or(1).
Also plot magnitude and prase spectra.

Criven 
$$x(t) = g(t)$$
.

$$x(w) = \int_{\infty}^{\infty} x(t) e^{-j(w)} dt = \int_{-\infty}^{\infty} g(t) e^{-j(w)} dt$$

$$= e^{-j(w)} |_{t=0}^{t=0} = 1$$

$$|x(w)| = 1$$

$$|x(w)| = 0$$

$$|x(w)| = 0$$

$$|x(w)| = 0$$

$$|x(w)| = 0$$

an Find the focuser transform of the signal the magnitude.

ALL = S(++0.5) - S(+-0.5). Also plat the magnitude. and phase specha. X(m)= & x(f) = jmf df = Ja [er(++0.5) -er(+-0.5)] e jwt dt = +10.5W -10.5W = 2/8/0 6.5 W) |xcw) = 102+45in2(0.5W) = ... & sin 0.5W.  $\angle x(m) = \tan^{1}\left(\frac{8\pi in(0.5m)}{2}\right)$ TT 2TT  $-\pi$ - 2T S 0 2 0 2 0 Ixcws/ ±7/2 7/2 7/2 -T/<sub>2</sub> C/T/ LXLW) => magniplide

Properties of CTFT:

1) linearity:

$$\begin{cases}
\chi(t) & \stackrel{FT}{\leftarrow} \chi(w) \\
\chi(t) & \stackrel{FT}{\leftarrow} \chi(w)
\end{cases}$$

then zet) = a xet) + by(t) (FT) zew) = a xew) + by(w)

$$Z(M) = \alpha \times (M) + b \times (M)$$

Hun 
$$z(t) = x(t-t_0) \stackrel{FT}{\longleftrightarrow} z(w) = e^{-i\omega t_0}$$

$$\int_{\infty}^{\infty} \frac{dt}{dx} = 1 \implies dt = d\lambda$$

$$\frac{dt}{dx} = 1 \implies dt = d\lambda$$

$$\frac{dt}{dx} = 1 \implies dt = d\lambda$$

$$\frac{dt}{dx} = \int_{\infty}^{\infty} \frac{x(\lambda)}{x(\lambda)} e^{i\omega\lambda} d\lambda = \int_{\infty}^{\infty} \frac{x(\lambda)}{x(\omega)} e^{i\omega\lambda} d\lambda$$

$$= e^{-i\omega\lambda} \int_{\infty}^{\infty} \frac{x(\lambda)}{x(\lambda)} e^{i\omega\lambda} d\lambda = e^{-i\omega\lambda} x(\omega)$$

3) Frequency Shift: y act) (F) xcw), then z(t) = e act) (+> z(w) = x(w) w) mod: 200 - FI ZIW)= JZIt) e-jwt dt = ouvotaces eint de = 2 x(t) = -j(w-wo) t dt = X(W-Wo) 4) Convolution: (mx FD xm) YH) (FI> YW) Then z(1) = x(1) \* y(1) < FT> z(w) = x(w) y(w) Hood: ZIWI = SZHI ENW OH = 5 [aut) \* you] = iwt dt W. K.T I = (+) y \* (+) = ∫ xw y (+-1) dl .: z(w)= [[ ] z(1) y(1-1) d1] e de d Merchanging the order of integration; z(m) = [ all) [ A(t-1) e\_imi df df Pul m=t-L => t= m+1; dm= dt · · zw) = fach fym) e-iw (m+1) dm dl = bain for years e-just don de

Z(W) = X(W).Y(W)

5 Multiplication:

(W) 
$$< \frac{FT}{4} > (H)$$
 (H)  $< \frac{FT}{4} > (H)$ 

Froof:

Interchanging the order of integration

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} x(\omega) \left[ \int_{-\infty}^{\infty} y(\omega) e^{i(\omega-\omega_0)t} dt \right] d\omega_0$$

6. Frequency differentiation:

When 
$$\frac{z(t)}{-it} = \frac{z(t)}{x(t)} = \frac{z(w)}{z(w)}$$

Proof:

$$= \int_{\infty}^{\infty} -it x(t) e^{-iwt} dt \times (w) = \int_{\infty}^{\infty} x(t) e^{-iwt} dt$$

$$= \frac{d}{dw} x(w) = \int_{\infty}^{\infty} -it x(t) e^{-iwt} dt$$

Parseval's theorem:

E. Parseval's theorem:

Interchanging the order of integration

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} x^* cw \int_{-\infty}^{\infty} x(t) e^{iwt} dt dw$$

= 
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{*}(w) \times (w) dw$$

$$= \int_{0}^{\infty} e^{2\alpha t} dt = \frac{-1}{2\alpha} \left[ e^{-2\alpha t} \right]_{0}^{\infty}$$

$$= \frac{1}{2a} \left[ 0 - 1 \right] = \frac{1}{2a}.$$

$$= \left[\frac{e^{-t}\left[\alpha+jw\right]}{\alpha+jw}\right]_{0}^{\infty}$$

$$z = \frac{-1}{\alpha + iw} \left[ 0 - 1 \right] = \frac{1}{\alpha + iw}$$

## \* Energy spectral density:

A plot of 1x will versus w is called energy spectral density.

conjugation and conjugation symmetry properly:

If xcm < FT xcm)

then zotan xt (1) (-w).

Proof: x (m) = so x(t) = jule dt

x (w)= [ ] xun eine de]

= \int at cts e ant at

xocomo = 2 og og (t) = -1(-m) f df

I acts is seed  $x^2(t) = x(t)$ .

1. x\*(m) = 0 >c(r) = 1(-m) p df

z χ(-ω).

Also x\* (-w) = x(w)

It show that FT of a conjugate Symmetite Signal is purely real.

## Existence & Fourier Integral.

Existena of fourier series: (Dirichlet anditions)

The conditions under which a periodic Rignal man be represented by a formier series are known as pirichled conditions.

In each period,

- 1) xxxx base only a brite no of maximal minima
- a) xet hase a time no of discontinuities.
- 3) x(t) is absolutely integrable over one period, ie  $\int |x(t)| dt \wedge \infty$ .

# Existence of Fourier handparm:

The Fourier hansform does not exist for all aperiodic punctions. The conditions for a xet) to have Fourier hansform one

- 1) x(t) is absolutely integrable over  $(-\infty, \infty)$ ie  $\int_{-\infty}^{\infty} |x(t)| dt < \infty$
- 2) xus has pinite no of discontinuities.
- 37 aus has a trik no. of maxima and minima,

### Fourier handorn thusems:

- 1) convolution theorems.
  - a) Time Convolution
  - b) hequency consolution (modulation).

    (multiplication).
  - 2) Parseval's theorem (Royleigh's theorem)

Proof: Refer properties of CTFT.

## haveny response of LTI syskms,

The previency eesponse gives the magnifiede suponse and prose suponse of the system

bequery lypone, H(w) = Y(w) CTranspor hundron). H(w) = X(x)

A plot of 1 Hews versus w is called magnified spectuum and a prot of LH(w) versus well called phase spectrum.

On find the pravency response of the system described by the differential ean!  $\frac{d^3y(d)}{d+3.} + 6.0 \frac{d^3y(d)}{d+3} + 5 \frac{dy(d)}{d+4} + 4y(d) = 314.$ 

Taking FT on both rides,

 $(\omega)$   $\gamma(\omega)$  +  $(\omega)$   $\gamma(\omega)$  +  $(\omega)$   $\gamma(\omega)$ 

+4 y(w) = 3x(w).

 $Y(w) [6w)^3 + 6(w)^3 + 5iw + 4] = 3x(w).$ 

d3ych) < FT (jw) Y(w) dinty (m) SIM)

dyas 🛬 in 1(m)

 $H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{3}{(\omega)^3 + 6(\omega)^3 + 5(\omega) + 4}$ 

hag esponse.

ean. The i/p and output of a causal. LTI system an donibed by the differential ean.  $\frac{d^2y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = x(t).$ 

- as Find the previency exposse of the system.
- b) find he impulse exponse of the offskin or what is the eespore of the sport acts = tetuch.

Scanned by CamScanner

dy(t) + 3 dy(t) + 2 y(t) = x(t) toucing FT an) & 1(00) + 3(m) 1(m) + 21(m) = x(m) Y(m) [(jw)2+3(jm)+2] = X(m).  $H(\mathbf{W})$   $= \frac{1}{2} + (\mathbf{W}) = \frac{1}{2} + 30 = \frac{1$ b) impulse suponse het). Han: (inta) (inta) = (inta) + intl 1= A (iwti) + B (iwt2). PW JW=-2 => -A=1 => A=1 e uch FT - 1 (in+a. PW JW= -1 => Bz 1 (+wi) + -1 + -1 (twi) + ... Taking inverse FT peq. diff. properly. hu= - e2 uu + e uu) -itxus of dxcm) c) viven such = tetuch). tocases - i dixu .... x(w) = (jw+1)2. Leuties 1 du juri Y(W) = H(Q) \* X(W). = 1 WHIXO - 1/1 The work (man) Cimal) e = (m+1)2 = (IN+2) CIWED = IN+2 IN+1 CIWED + D 3 A=-1, B=1, C=-1, D=1 Touring inv. FT => y(t) = - e un) + e un - te un + 2 eux) Scanned by CamScanner

ion. Consider a causal LTI 8/m with prequency eesponse H(w): 1 For a poincular i/p x(t), the 8/m i Observed to produce the autput yet) = et ultil- et ultil. Determine xet).

(Muen yet)= etuck)- ede uct)

TOWING FT.

$$\gamma(\omega) = \frac{1}{1 + 1} - \frac{1}{1 + 2} = \frac{1}{1 + 2} = \frac{1}{1 + 2}$$

 $(J\omega + 1)(J\omega + 2).$   $(J\omega + 1)(J\omega + 2).$   $(J\omega + 2)(J\omega + 2).$   $(J\omega$ 

 $= \frac{j\omega+3}{(j\omega+1)(j\omega+2)} = \frac{\rho}{j\omega+1} + \frac{\rho}{j\omega+2}.$ 

(1+wi) & + (s+wi) A = 8+wi

 $\frac{1}{1+\omega \dot{\nu}} = \frac{1}{1+\omega \dot{\nu}} = \frac{1}$ 

Taking inv. LT => x(t)= 2 e u(t) - e u(t)

On. Find the previous exponse of the RC circuil Shown in pq. given below. Plot magnitude and phase suponse tou RC=1. Also find the impulse les ponse of the circuit.

SUL TO THE COME

The differential ean. governing the exposer of the. aroust 0 octs) = Rills + - Silts dt yet) = - Siets dt Taking FT on both sides of the above eqns:  $X(\omega) = R I(\omega) + \frac{1}{C} I(\omega) \Rightarrow I(\omega) [R + \frac{1}{j\omega C}] = X(\omega)$ X(W)= [JWRC+1] I(W)  $\gamma(\omega) = \frac{1}{C} \frac{\gamma(\omega)}{\gamma(\omega)}$ peq. eu poner, H(W) = \frac{\frac{1}{2}(\omega)}{1000} = \frac{\frac{1}{2}(\omega)}{1000} = \frac{\frac{1}{2}(\omega)}{1000} = \frac{1}{2}(\omega) H(W). = 1+1WRC impulse susponse: HCW) = 1 RC[iw+RC] Taking inv. LT => hct) = (imp. supur) Rc etct wet). When  $RC = 1 + (W) = \frac{1}{1+iW}$ magnitude eusponse  $|H(w)| = \frac{1}{\sqrt{1+w^2}}$ Phase exponse LHW1= - tan'w. w→ o 0 10 50 100 20  $IH(\omega)I$ 0.1 0.02 0.01 LH(W) O - 1.47 -1.56 -1.57 -1.55 1 LH(W) 1 (W) HI -100 -10 -5 0 5 10 100 > W -100 10 5 5 10 1007 W. magninude exporte Phase les ponse.

### Correlation theory:

correlation is basically used to compare two signals. It is a measure of the degree to which two signals are similar.

The correlation of two Rignals is divided into

- -> cross correlation
- -> Auto-correlation\_

#### cross correlation:

It is a measure of similarity between one fight and the time delayed version of another signal.

The cross correlation of two different fights occide and yet is given by

Try(1): [xer) yer-tide

= [xer) y[-(1-1)] dt

= [xer) y[-(1-1)] dt

= xer) y (-1-2) de

= xer) y (-1-2) de

### Auto - correlation:

when x(t) = y(t), the correlation operation is alled autocorrelation that is, if is defined as the correlation of a signal with itself. The auto-correlation of loss signal x(t) is given by  $y_{xx}(t) = \int_{-\infty}^{\infty} x(t) x(t-1) dt$ 

The lime shift L=0, then

1xy(0) = faces x(E) dt

correlation theorem:

The cross correlation of two signals corresponds to the multiplication of the source transform of one organized signal by the complex conjugate of FT of scord signal ray (1) = FT; xelw) xy\*(w).

\* The auto correlation theorem 81ates that the

FT of auto correlation function 72x(+) yields the

energy density function of 8ignal x(+)

7xx(+) \( \frac{F}{2} \) \[ |x(\omega)|^2 \]

1x(w)?= \frac{1}{\alpha+\sigma} \frac{1}{\alpha-\sigma}

 $= \frac{1}{\Omega^2 + \omega^2}$ 

= of = (a+iw) to dt

 $\frac{1}{(\alpha+jw)(\alpha-jw)} = \left[\frac{e^{-(\alpha+iw)}E}{-(\alpha+iw)}\right]_{0}^{\infty}$ 

 $= \frac{A}{\alpha + i\omega} + \frac{B}{\alpha - i\omega} = \frac{A}{i\omega + \alpha} - \frac{B}{i\omega - \alpha} = \frac{1}{\alpha + i\omega}.$ 

1 = A (majounta).

(a)  $j\omega z = 0 \Rightarrow 1 = 2 \cos \theta + \theta = 2 \cos \theta$ 

Pa juz -a => 12 -200 A , B= = 2000 a 500.

 $80x |\chi(\omega)|^2 = \frac{1}{6400} \cdot \frac{1}{0+i\omega} + \frac{1}{6400} \cdot \frac{1}{0+i\omega}$ 

Taking inv. Parch): The sa ed uch)

## Distortion des transmission through a system:

The change of shape of the signal when it is hawnished through a signal distortion. Transmission of a signal through a system is said to be distortionless if the signal through a system is said to be distortionless if the signal. This septica may have different magnitude and also it may have different time delay. It constant change in magnitude and a constant time delay are not considered as distortion only the shape of the rignal is important. Mathematically we can say that a signal xet is transmitted without distortion if the output

y(t) = kx (t-td) →0

when k is a constant expresenting the change in amplitude Camplification or attenuation) as to is delay time. A distortionless s/m and syrical i/p and o/p wavefurms on shown in top. given below years kxce-to)

Taking FI on both rider of the ear of highing property)

Thurspare, for distortionless transmismon, the hanges function of the 8/m must be of the form

H(W) = Y(W) = Ke -JWEd.

Taking inverse FT, the corresponding impulse supports must be  $h(t) = k \mathcal{E}(t - td)$ .

14 is clear that the magnitude of the transfer him.

14 is a constant for all values of w.

The phase shift 2 + cw = -w + d and it varies linearly with bequency, in general  $2 + cw = n\pi - w + d$ So for destrotion less transmissions of a signed through a s/m, the magnitude 1 + cw = 1 should be a constant. ie all the bequency components of the 1/p signed must undergo the same amount of amplification and alternations. I phase spectrum should be proportional to bequency.

The mugnitude and phase characteristics of a distortionless transmission system is shown in tog. Given below.



Transmission of a udargular pulse through an ideal low pass titles:

An ideal Mikr how very shoup and charactership, and it passes signal of certain specified band of hequencies exactly and totally rejects signal of hequences out out out the band.

The peaceancy exponse of an ideal LPF with and of bequery, we is defined by

$$H(\omega) = \begin{cases} e^{-j\omega t_0} & |\omega| \leq \omega_c. \\ 0 & |\omega| > \omega_c \end{cases}$$

The impulse lesponse of the pitch is

here) = \frac{1}{2\pi} \text{Hew} e^{iwe} does.

$$= \frac{1}{2\pi} \int_{-\omega_c}^{-\omega_c} e^{-j\omega t_0} \int_{-\omega_c}^{-\omega_c} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{-\omega_c} e^{-j\omega t_0} d\omega$$

$$= \frac{1}{2\pi} \left[ \frac{e^{i\omega}(t-t_0)}{i(t-t_0)} \right]_{-\omega_c}^{\omega_c} = \frac{1}{2\pi i(t-t_0)} \left[ \frac{i\omega_c(t-t_0)}{e} - \frac{i\omega_c(t-t_0)}{e} \right]_{-\omega_c}^{\omega_c}$$

$$z = \frac{1}{\pi} \frac{\sin \omega_c(t-t_0)}{t-t_0} = \frac{\omega_c}{\pi} \frac{\sin \omega_c(t-t_0)}{\omega_c(t-t_0)} = h(t).$$





$$= \int \frac{\omega_c}{\pi} \frac{\sin \omega_c (t-t_0-2)}{\cos c (t-t_0-2)} d2$$

Pu 
$$\lambda = \omega_c (t - t_0 - r_2)$$

$$d\lambda = -\omega_c dz \implies dz = -\frac{d\lambda}{\omega_c}$$

$$\frac{7}{2} \rightarrow \frac{7}{2} \Rightarrow \lambda \rightarrow \psi(k-k_0 + \frac{7}{2})$$
$$\rightarrow \alpha.$$

The elationship exist blu a parameters a) duration of engular yo pulse to and b) and off heq. of the ac. when wc < 誓 when ouc > 2TT when ouc = 2TT on 19(1)





Hilbert hansform:

\* when the phase angles of all the positive property

8 pechal components of a given signal are shifted by

-90° and the phase angles of all the negative property

8 pechal components are shifted by +90°, the esculbing

tundion of time is called Hilbert transform of the signal.

\* The amplitude spectrum of the signal is unchanged by

Hilbert transporm operation. Only the phase spectrum of the

8 g nad is changed.

\* The Hilbert transported rignal is also a time demand

xus in the i/p to the Hilbert transform and  $\hat{x}(t)$  is o/p.

The impulse exponse of Hilbert transform is  $h(t) = \frac{1}{11t}$ i. The o/p,  $\hat{x}(t) = x(t) + h(t)$ .  $= x(t) + \frac{1}{11t} = \int_{-\infty}^{\infty} x(x) \frac{1}{11} (t-x) dx$ 

$$\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(x)}{t-x} dx$$

The inverse Hilbert transform, by means of which the original rignal xits is recovered from xits is defined by

$$x(t) = \frac{1}{L} \int_{0}^{\infty} \frac{r^{-\lambda}}{x(\lambda x)} dx$$

The pendeons x(4) and  $\hat{x}$ (4) are said to be Hilbert transport pair For him pendeon  $\frac{1}{114}$ , we have  $\frac{1}{114} \stackrel{F7}{\longleftrightarrow} -1 \text{ sgn}(w)$ 

where squew is the signer hundres in the traversey demain is given by squew = {1 w>0

 $W \cdot K \cdot T$ 

$$\hat{\mathbf{x}}(t) = \mathbf{x}(t) * h(t).$$

$$= \mathbf{x}(t) * \frac{1}{\pi t}$$

Taking FT

~ x (w) = x (w). 4 - 1 8gn (w)

CWIX CWI ngs i - = (W) &

This implies that  $\hat{x}(w) = \begin{cases} -ix(w) & \omega > 0 \\ ix(w) & \omega < 0 \end{cases}$ 

Since x cws is the spectrum of x ces and x cws is the spectrum of x ces, this obeside may be considered as one that produces a phase shift of -90° for all positive pequencies of the i/p signal and +90° for all regalitue beaucies as shown in by. Given below.



Properties of Hilbert transpam!

- 1) It does not change the domain of a rignal
- 2) It does not after the amplitude spectrum of a signal
- 3) A rigned xet and its Hilbert transform xiles are orthogonal to each other ite jacks xiles dt = 0.
- 4) If  $x^2(t)$  is the Hilbert hanspens of x(t), the Hilbert hanspens of x(t) is -x(t).

#### Applications:

- 1) To lealize phase selectivity in the generalism of single ride band modulation of skeme.
- 2) to represent board pars signals.

22

( CIFY STO(W).

8) To selate the gain and phase characteristics of matricipans

an. Find the Hilbert transform of x(+) = sin wot.

X(w) = -17 [e(w-wo) - e(w+wo)]

 $\hat{x}$  (w) = -1 syn (w). x(w).

 $=-i \left\{ -i\pi \left[ \delta(\omega + \omega_0) - \delta(\omega + \omega_0) \right] \right\} sgn(\omega)$ .

2 -T[e(w-wo) 7 e(w+wo)] sgn(w)

= -TT [d(w-wo) + e(w+wo)]

TOUCHAY INV. FT

2 U) = - Coswot

On. Find the Hilbert transporm of act) = coscool x(w) = T[&(w-wo) + &(w+wo)] 2nd(w)

 $\hat{x}(w) = -i sgn(w) \cdot x(w)$ 

= -i { \pi [ \text{\pi} \con + \text{\pi} \con + \text{\pi} \con \] } ] \frac{1}{3} i - =

= -i { T [ e(w-w) - e (w+w) ] ] }

= -jπ[e(w-wo) - e(w+wo)]

[e e d]

-(ω-ω))

-(ω-ω))

1000 rais

TOUGHT ON PT

Litz 8inwot.

3 = - = - = - jmg X(1) = 210 mof

end 500

2 - [ 2016 (w-wo) - 276 (w+wo)]

= -jn[8(u-wo-8(wew)

Laplace transform:

It is used for the analysis of antineous time signals and bystems. The taptace transform has the advantage that it is a simple and dystematic method and the complete solution can be obtained in one step and the complete solutions can be introduced and also the initial conditions can be introduced in the beginning of the pueus itself to solve differential egns which are in time domain, they are time! considered into algebraic earns in prequency durations are using taptace transform, the algebraic saturations are manipulated in 8-domain and the establishment in prequency duration in prequency duration in prequency duration in the duration of the place transform.

The bilateral laplace transform of a continuous time argued act) is defined as  $x(s) = \int_{-\infty}^{\infty} x(t) e^{-8t} dt$ 

The inverse laplace hanspoons of xcs) is defined as  $\alpha(t) = \frac{1}{2\pi i} \int x \cos e^{St} ds$ 

The unitaleral eaplace transform of a Continuous time signal xces is defined on.

x(s), of x(d) = 8t dt.

Region of convergence (ROC)

The range of 5 for which the laplace hampum converge is called Region of convergence (ROC).

Scanned by CamScanner

$$x(t) = e^{at}u(t) + e^{-bt}u(-t)$$
, b>a
$$x_{2}(t)$$

$$x_{1}(t) = e^{-at}u(t) \iff x_{1}(s) = \frac{1}{s+a} = \frac{1}{s+b}$$
 $x_{2}(t) = e^{-bt}u(-t) \implies x_{2}(s) = \frac{1}{s+b} = \frac{8+b-s-q}{(s+a)(s+b)}$ 
 $x_{2}(s) = \frac{1}{s+a} = \frac{b-a}{(s+a)(s+b)}$ 



Locale the pole and zero of xcs) and also the Roc in the

$$\chi_{(CL)} = e^{2L}u(-L)//(SL)^{2} - \frac{1}{S+2}, \quad \chi_{(CL)} = e^{2L}u(-L)$$

$$= \chi_{(CS)} - \frac{-1}{S+3}$$

$$= \chi_{(CS)} - \frac{-1}{S+3}$$

$$(S+2) = \frac{1}{S+2} - \frac{1}{S+3} = \frac{-(S+3) - (S+2)}{(S+2)(S+3)}$$

$$= -S + 36 - S - 26$$

$$= -2S - 56$$

$$(S+2)(S+3)$$

$$(S+2)(S+3)$$

$$Roc: = \angle -3.$$

Relation between LT and FT! x(E) = X(S) = \( \int \text{x(F)} \) \( \text{x(F)} \) \( \text{grad} \) =  $\int_{0}^{\infty} \alpha(t) e^{-(\sigma+j\omega)t} dt$  $\sqrt{\sigma} = 0$ , then  $\chi(s) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt = Fr dt$ Rulation between z-transform and laplace transform Let occes be a continuous time signal The discrete from signal of (t) can be obtained by sampling x with sampling period of TSCC. ie. x CET is obtained by multiplying xxx) with a seq. of impulse T sec. apail  $x^*(t) = \sum_{n=0}^{\infty} x(nT) \delta(t-nT).$ nu laplace hansjorm of x (4) is given by  $L\{x^*(t)\} = x^*(s) = L\left[\sum_{n=0}^{\infty} x(nT) o(t-nT)\right]$  $= \sum_{n=0}^{\infty} \alpha(nT) L \left\{ \delta(L-nT) \right\} = \sum_{n=0}^{\infty} \alpha(nT) \frac{L^{nTs}}{n}$ Bu solumbles of sixono disconsolos una reference for the property. —> @ Pu z = ets in ean 0 we get the z- transform of acos).  $\therefore L\{x^*(t)\} = \sum_{n=0}^{\infty} x(n\tau) z^n z z \{x(n\tau)\}$ 

Scanned by CamScanner

$$x(t) = \frac{1}{2} = \frac{i\omega t}{u(t)} + \frac{1}{2} = \frac{i\omega t}{u(t)}$$

$$\chi(s) = \frac{1}{2} \frac{1}{S - jw}$$
 and  $\chi_2(s) = \frac{1}{2} \frac{1}{S + jw}$ .

$$X(S) = \frac{2}{3} \left[ \frac{8 - 0 \omega}{1 + 8 + 0 \omega} \right] = \frac{2}{3} \left[ \frac{8 + 0 \omega + 8 - 0 \omega}{8 + 0 \omega} \right]$$

$$= \frac{1}{2} \left[ \frac{25}{5^2 + \omega^2} \right] = \frac{5}{5^2 + \omega^2}$$

Coswf ((f) 
$$\stackrel{L}{\longleftrightarrow} \frac{8}{8^2 m^2}$$

$$= \frac{1}{\sqrt{2}} \left[ \frac{1} \left[ \frac{1}{\sqrt{2}} \left[ \frac{1}{\sqrt{2}} \left[ \frac{1}{\sqrt{2}} \left[ \frac{1}{\sqrt{2}} \left[ \frac{1}$$

$$X(s) = \frac{1}{8j} \left[ \frac{1}{8-iw} - \frac{1}{8+iw} \right] = \frac{1}{8j} \left[ \frac{8+iw-8+iw}{8^2+w^2} \right]$$

$$= \frac{1}{27} \left[ \frac{25 \omega}{8^2 + \omega^2} \right] = \frac{\omega}{8^2 + \omega^2}$$

# Properties of laplace transformati

- 1) lineauity:

  ax,(L) + bx,(L) (L) ax,(cs) + bx,(cs).
- 2) Time shipping: x(1-to) (1) e sto x(s).
- 3) bequery shipping:

  eat all \( \frac{L}{\rightarrow} \times \cs-a \right).
- A) Time scaling!

  acati Ly ax (3)
- 5) trapency scaling:

  \( \frac{1}{\alpha} \times \times \times (\frac{1}{\alpha}) \times \times \times (\alpha \sigma).
- 6) Time differentiation:

  . d x(t) < => 8 x(s) x(o).
- 7) Time integration:  $\int_{0}^{\infty} x(x) dx \xrightarrow{L} \frac{x(s)}{s}$
- 8) time convolution: x(t) \* x2(t) <-> X(CS). X2(S).
- q) Conjugation:
- 10) complex bequercy differentiation:

  -t x(t) <-> d x(s).

  the x(t) <-> (-1)^n d^n x(s).
- 11) Initial value thusen:

  \$\frac{\pi}{8} \times \pi \times \time
- 12) Final value throum: 8x(S).

$$x(s) = \int_{-\infty}^{\infty} x(t) e^{st} dt = \int_{-\infty}^{\infty} o(t) e^{st} dt$$

$$= e^{st} |_{t=0} = 1/2$$

b) 
$$x(t) = 1$$
  
 $x(s) = \int_{-\infty}^{\infty} x(t) e^{st} dt = \int_{-\infty}^{\infty} e^{-st} dt = \left[\frac{e^{-st}}{-s}\right]_{-\infty}^{\infty}$   
 $= -\frac{1}{s} [0-1] = \frac{1}{s}$ 

c) 
$$x(t) = t$$
  
 $x(s) = \int_{0}^{\infty} x(t) e^{st} dt = \int_{0}^{\infty} t e^{st} dt$   
 $= \left[ t e^{-st} - \int_{-s}^{1} e^{-st} dt \right]_{0}^{\infty}$   
 $= \left[ t e^{-st} - e^{-st} \int_{0}^{\infty} e^{-st} dt \right]_{0}^{\infty}$   
 $= \left[ t e^{-st} - e^{-st} \int_{0}^{\infty} e^{-st} dt \right]_{0}^{\infty}$   
 $= \left[ t e^{-st} - e^{-st} \int_{0}^{\infty} e^{-st} dt \right]_{0}^{\infty}$   
 $= \left[ t e^{-st} - e^{-st} \int_{0}^{\infty} e^{-st} dt \right]_{0}^{\infty}$   
 $= \left[ t e^{-st} - e^{-st} \int_{0}^{\infty} e^{-st} dt \right]_{0}^{\infty}$   
 $= \left[ t e^{-st} - e^{-st} \int_{0}^{\infty} e^{-st} dt \right]_{0}^{\infty}$ 

d) 
$$\alpha(t) = t^{2}$$

$$x(s) = \int_{\alpha(t)}^{\alpha(t)} \frac{e^{st}}{dt} dt = \int_{0}^{t^{2}} \frac{e^{-st}}{t^{2}} dt$$

$$= \left[t^{2} \frac{e^{-st}}{-s} - \int_{0}^{2t} \frac{e^{-st}}{s^{2}} dt\right]_{0}^{\infty}$$

$$= \left[t^{2} \frac{e^{-st}}{-s} - \left(2t \frac{e^{-st}}{s^{2}} -$$

$$= \begin{bmatrix} t^{2} \frac{e^{-st}}{s} - (2t \frac{e^{-st}}{s^{2}} - 2 \frac{e^{-st}}{s^{2}}) \end{bmatrix} 0$$

$$= \begin{bmatrix} t^{2} \frac{e^{-st}}{s} - 2t \frac{e^{-st}}{s^{2}} - 2 \frac{e^{-st}}{s^{3}} \end{bmatrix} 0$$

$$= \begin{bmatrix} t^{2} \frac{e^{-st}}{s} - 2t \frac{e^{-st}}{s^{2}} - 2 \frac{e^{-st}}{s^{3}} - 0 + 0 + 2 \frac{e^{0}}{s^{3}} \end{bmatrix}$$

$$= \begin{bmatrix} 8 \frac{e^{-st}}{s} - 28 \frac{e^{-st}}{s^{2}} - 2 \frac{e^{-st}}{s^{3}} - 0 + 0 + 2 \frac{e^{0}}{s^{3}} \end{bmatrix}$$

$$= \begin{bmatrix} 8 \frac{e^{-st}}{s} - 28 \frac{e^{-st}}{s^{2}} - 2 \frac{e^{-st}}{s^{3}} - 0 + 0 + 2 \frac{e^{0}}{s^{3}} \end{bmatrix}$$

$$= \begin{bmatrix} 0 - 0 - 0 - 0 + 0 + 2 \frac{e^{-st}}{s^{3}} - 2 \frac{e^{-st}$$

|                 |                                 |       | 1         | 1.00               |   |
|-----------------|---------------------------------|-------|-----------|--------------------|---|
| aplace          | handorm of                      | Some. | stendard  | ! elempis          |   |
| all)            | x(s)                            |       | xu)       | (2) x              |   |
| છ (£)           | 1                               | ē(    | or wis    | $(8+0)^2+\omega_0$ |   |
| 1<br>Ł          | 15 18                           | é     | at oos wt | (S+a)?+ w          | _ |
| $f_U$           | $\frac{S_{U^{\dagger}}}{U_{I}}$ |       |           |                    |   |
| ē <sup>ał</sup> | sta.                            |       |           |                    |   |
| Łēal            | (S+a)2.                         |       |           |                    |   |
| to eat          | $\frac{n!}{(8+a)^{n+1}}$        |       |           |                    |   |
| Sin WŁ          | 88+W2                           |       |           |                    |   |

Coscut

an Find My LT of t2 = 26 UCL).

By complex frog differentiation properly

$$t^{n} \propto (t) \stackrel{L}{\longleftrightarrow} C - 10^{n} \frac{ds^{n}}{ds^{n}} \times (s).$$

$$= \frac{d^2}{ds^2} \frac{1}{s+2}$$

$$= \frac{ds}{ds} \left[ \frac{(8+5)s}{(8+5)\cdot 0 - (1\cdot 1)} \right]$$

6

$$= \frac{(8+2)^{2} \cdot 0 - -1}{(8+2)^{4}} \frac{\partial (9+2)}{\partial S} \left[ \frac{-1}{(8+2)^{2}} \right]$$

$$= \frac{(S+3)^4}{(S+3)^4} = \frac{(S+3)^3}{(S+3)^3}$$

con for the hillowing transform pair  $L[x(t)] = \frac{25}{8^2-2}$  determine the LT of x(2t).

By time scaling property: xcal) ( ) \( \frac{1}{\alpha} \times \frac{1}{\alpha} \times \frac{1}{\alpha} \)

.: 
$$x(al) \longleftrightarrow \frac{1}{a} \frac{a(s/2)}{(s/a)^2 - a} = \frac{1}{a} \frac{s}{\frac{s^2 - s}{4}} = \frac{1}{a} \frac{\frac{s}{s^2 - s}}{\frac{s^2 - s}{4}}$$

On. Find the LT of 
$$x(t) = e^{2t} \sin_{x} x \cdot u(t)$$

W. KT:  $8in wt u(t) \stackrel{\bot}{\leftarrow} \frac{x}{8^{2}+u^{2}}$ 
 $8in 2t u(t) \stackrel{\bot}{\leftarrow} \frac{x}{8^{2}+u^{2}}$ 

Current preparety  $8intt$  property:

 $e^{at} x(a) \stackrel{\bot}{\leftarrow} x(s-a)$ 
 $e^{at} x(a) \stackrel{\bot}{\leftarrow} x(s+a)$ 
 $e^{at} \sin_{x} x(a) \stackrel{\bot}{\leftarrow} x(a) \stackrel{\bot}{\leftarrow} x(a)$ 
 $e^{at} \cos_{x} x(a) \stackrel{\bot}{\leftarrow} x(a) \stackrel{\bot}{\leftarrow} x(a)$ 
 $e^{at} \cos_{x} x(a) \stackrel{\bot}{\leftarrow} x(a)$ 

$$X(S) = \frac{2}{S^{2}} \left[ 1 + \tilde{e}^{TS} \right] - \frac{X(S)}{S^{2}}.$$

$$X(S) + \frac{X(S)}{S^{2}} = \frac{2}{S^{2}} \left[ 1 + \tilde{e}^{TS} \right].$$

$$X(S) \left[ 1 + \frac{1}{S^{2}} \right] = \frac{2}{S^{2}} \left[ 1 + \tilde{e}^{TS} \right].$$

$$X(S) \left[ 1 + \frac{1}{S^{2}} \right] = \frac{2}{S^{2}} \left[ 1 + \tilde{e}^{TS} \right].$$

$$X(s) \left[ \frac{s^{2}+1}{s^{2}} \right] = \frac{2}{s^{2}} \left[ 1 + e^{\pi s} \right]$$

$$X(s) = 2 \left[ 1 + e^{\pi s} \right]$$

$$\frac{s^{2}+1}{s^{2}+1}$$

$$\frac{\partial^{2} f}{\partial s} = 2 \left[ \frac{e^{-St}}{g^{2}+1} (-\sin t - \omega st) \right]_{0}^{\infty}$$

$$= 2 \left[ \frac{e^{\pi s}}{s^{2}+1} (1) - \frac{1}{s^{2}+1} (-1) \right]$$

$$= 2 \left[ \frac{e^{\pi S}}{8^{2}+1} + \frac{1}{8^{2}+1} \right]$$

On Determine the LT of the saw tooth could some



X(s), 
$$\int_{-\infty}^{\infty} e^{-st} dt = \int_{-\infty}^{\infty} \frac{3}{a} t e^{-st} dt = \frac{3}{a} \int_{-\infty}^{\infty} t e^{-st} dt$$

$$= \frac{3}{2} \left[ \frac{1}{2} \frac{e^{-sk}}{-s} - \int \frac{e^{-sk}}{-s} dt \right]_0^2$$

$$= \frac{3}{2} \left[ \frac{1}{2} + \frac{e^{-st}}{s^2} - \frac{e^{-st}}{s^2} \right]_0^2 = \frac{3}{2} \left[ \frac{1}{2} + \frac{e^{-2s}}{s^2} - \frac{e^{-2s}}{s^2} \right]_0^2$$

$$= \frac{3}{8} \frac{1}{8^2} - \frac{28}{8} \left[ \frac{3}{8} \frac{\frac{3}{8}}{88^2} \right]$$

### On. Dekimin the LT q

$$= \left[ -t \frac{e^{SL}}{8} - \frac{e^{SL}}{8^2} \right] + \left[ -\ell - \ell \right] \frac{e^{SL}}{8} + \frac{e^{SL}}{8^2} \right]$$

$$z - \frac{2e^{S}}{s^{2}} + \frac{e^{2S}}{s^{2}} + \frac{1}{s^{2}} = \frac{1 - 2e^{S} + e^{2S}}{s^{2}} = \left[ \frac{1 - e^{S}}{s} \right]^{2}$$

Laplace transform of periodic function.

On. Delenmine the Li of a full wave rechiber.



$$x(s) = a \left[ e^{\pi s} + 1 \right]$$

$$X(S) = \frac{1}{1 - e^{-\pi S}} \cdot 2 \left[ \frac{e^{-\pi S}}{6^2 + 1} \right] = \frac{2 \left[ e^{-\pi S} \right] \left[ 8^2 + 1 \right]}{\left[ 1 - e^{-\pi S} \right] \left[ 8^2 + 1 \right]}$$

On. Determine the LT of





an. Find the LT of xcer= tell sin 2 tull) wing properties of LT.

$$x_1(t) = 8in 2t u(t) \leftrightarrow x_1(s) = \frac{2}{8^2 + 4}$$
 $x_2(t) = e^{-2t} 8in 2t u(t) \leftrightarrow x_2(s) = \frac{2}{(8+2)^2 + 4} = \frac{2}{8^2 + 48 + 8}$ 

Complex projectly) = 
$$-\left[\frac{(s^2+4s+8)\cdot 0-2(2s+4)}{(s^2+4s+8)^2}\right]$$

$$= + \frac{2(28+4)}{(8^2+48+8)^2} = \frac{4(5+2)}{(5^2+45+8)^2}$$

an. Find the LT of the waveform.

$$x(s), \frac{1}{(1-e^{-8sT})} \frac{2}{s} \left[1-e^{-sT}\right]$$

$$= \frac{2}{s} \frac{(1-e^{-sT})}{(1-e^{-sT})} (1+e^{-sT})$$

$$= \frac{2}{s} \left[\frac{1}{1+e^{-sT}}\right]$$

On. Find the LT of the coareforms



 $gq_{ij}$ : x'(f)



mathematically  $\alpha(4) = u(4) - 2u(4-7) + u(4-27)$ .

$$\frac{1}{8} - 2\frac{e^{-s}}{s} + \frac{e^{-s}}{s}$$

$$\frac{1}{8} - 2\frac{e^{-s}}{s} + \frac{e^{-s}}{s} = \frac{1-2e^{-s}}{s} =$$

$$X(S) = \frac{1}{[1-\tilde{e}^{ST}]^{S}}$$

Inverse Laplace hansform.

The inverse LT of x cs) is defined as X(F)= 211) \ x(8) est ds

Qn. Find the inverse LT of  $X(S) = \frac{S}{S^2 + 5S + 6}$  (perhal fraction method).

$$X(S) = \frac{S}{(8+2)(S+3)} = \frac{A}{S+2} + \frac{B}{S+3}$$

8 = A(S+3)+ B(S+2)

PW 8=-3 => B= 3 PW 8=-2 => A=-2

.: 
$$\chi(s) = -2 \frac{1}{s+2} + 3 \frac{1}{s+3}$$

Taking inverse LT  $x(4) = -2e^{2k}u(4) + 3e^{3k}u(k)$ 

Find the inverse LT of XCS) = 352+85+6 (6+2)(52+25+1)

$$X(S) = \frac{3S^{2}+8S+6}{(S+2)(S+1)^{2}} = \frac{A}{S+2} + \frac{B}{S+1} + \frac{C}{(S+1)^{2}}$$

Rado 256 62 A = 2 , B = 1 , C= 1

Taking inv. LT.

x(t)= 2 e u(t) + le u(t)

an · Find the inv. 17 of xcs)= 25+1 (3+29+2)

$$X(S) = \frac{28+1}{(8+1)(8-(-1+1))(8-(-1-j))} = \frac{A}{(8+1)} + \frac{B}{(8-(-1+j))} + \frac{C}{(9-(-1-j))}$$

$$28t1 = f(s - (-1+1))(s - (-1-1)) + g(s+1)(s - (-1-1))$$

$$+ c(s+1)(s - (-1+1))$$

$$+ c(s+1)(s - (-1+1))(s - (-1+1))(s - (-1+1))$$

$$-2+2i+1 = g(s)(g(s))$$

$$-2+2i+1 = c(-1)(s - (-1+1))(s - (-1+1))(s - (-1+1))$$

$$-2+2i+1 = c(-1)(s - (-1+1))(s - ($$

$$\chi(s) = \frac{2}{(s+4)(s-1)} = \frac{A}{s+4} + \frac{B}{s-1}$$

a) If the ROC is 
$$-A \ge RE(S) \angle I$$

The representation of the repr



$$X(S) = \frac{-2}{5} \frac{1}{5 \cdot 4} + \frac{2}{5} \frac{1}{5 \cdot 5} - \frac{1}{5 \cdot 1}$$

$$X(S) = \frac{-2}{5} \frac{1}{5 \cdot 4} + \frac{2}{5} \frac{1}{5 \cdot 5}$$

Then causal Than could.



On the the consolution theorem of LT to bind y(4) = 
$$x_1(4) + x_2(4) = u(4-2)$$

$$\alpha_1(H) = e^{3t}u(H) \Rightarrow \times_1(S) = \frac{1}{S+3}$$

$$x_{2}(L) = e u(L-2) \Rightarrow x_{1}(S) = \frac{e^{-x}}{S}$$

$$X(S) = X_1(S) \cdot X_2(S) = \frac{1}{S+3} \cdot \frac{e^{2S}}{S} = \frac{e^{2S}}{S(S+3)}$$

Pul S= 0 
$$\Rightarrow$$
 A=  $\frac{1}{3}$  Pul S=  $\frac{1}{3}$ .

$$y_1(t) = \frac{1}{3}u(t) - \frac{1}{3}e^{-u(t)}$$
.

Eas  $y_1(s) \leftarrow y_1(t-2)$  (: By time shipping property).

Here he pole S=-3 lies to the left of ROC. Here the pole give rise to a causal signal.

The mole S=-2 lies to the left of ROC.

The pole S=-2 lies to the right of Roc, hence the pale give rise to a non causal signal. (41 => - uc-1)

$$\chi(S) = \frac{2}{(S+3)}(S+2) = \frac{A}{S+3} + \frac{B}{S+2}$$

$$\chi(s) = \frac{1}{(s+5)(s+1)}, -5 \angle Re(s) \angle -1$$

$$X(S) = \frac{1}{(S+5)(S+1)} = \frac{A}{S+5} + \frac{B}{S+1}$$

$$(x(s)) = -\frac{1}{4} + \frac{1}{5+5} + \frac{1}{4} + \frac{1}{5+1}$$

1) ROC i)  $-5 \neq Re(s) < -1$ 

$$(200) = -\frac{1}{4}e^{51}u(1) - \frac{1}{4}e^{51}u(-1)$$

On Determine the initial of binal value of the function whose LT is

given a 
$$x(s) = \frac{55+50}{8(s+5)}$$
.

given at 
$$X(S) = \frac{88+350}{8(S+5)}$$
.  
 $X(O) = 11 SX(S) = 11 8.5S+50 = 14 8(5+5)$   
 $S \to \infty$   $S \to \infty$   $8(S+5) = S \to \infty$   $8(1+5)$ 

$$= 5/1$$
 $= 50 \times 10$ 

Determine the inverse LT of StA works construction On.

$$X(S) = \frac{8+4}{2(S^2+\frac{5}{2}S+\frac{3}{2})} = \frac{8+4}{2(S+1)(S+\frac{3}{2})} = \frac{A}{S+1} + \frac{B}{S+\frac{3}{2}}.$$

taplace transporm analysis of LTI systems. consider a continuous time LTI 8/m. xct) hed yet). yet) = xct) \* h(t).

Takeing LT

YCO) = XCO). HCO)

H(S) = Y(S) is called the system purction or transfer funding of the s/m. . 1.1 is the ratio of laplace hars fromed augus be the laplace transformed input.

Relation between hansfu function and differential egn:

The nth order LTI CT s/m described by the differential eau in  $\sum_{k=0}^{N} a^{ik} \frac{q_k}{q_k} A(r) = \sum_{k=0}^{N} p^k \frac{q_k}{q_k} x(r)$  $\frac{dt_{K}}{dt_{K}} = S_{K} \times (S)$ 

Taking LT. on both sides

= ak 8 Y(s) = = bk 8 x(s)

Y(S) & aksk = x(S) & bksk

 $\frac{y(s)}{x(s)} = \frac{\sum_{k=0}^{M} b_{k} s^{k}}{\sum_{a_{k}} a_{k} s^{k}} = \frac{b_{0} + b_{1} s + \dots b_{M-1} s^{M-1} + b_{M} s^{M}}{a_{0} + a_{1} s + \dots a_{M-1} s^{M-1} + b_{N} s^{M}}$ 

when <u>yes</u> i called hanger function.

H(s) plays and a major lole in hinding lesponse of system to too different inputs.

steps to hind system busponse, yel):

- is first, we find the LT of input acces.
- es Find YES) = H(S) X(S)
- 3) Then we take inverse L7 to get yet).

Cinited landstan

ou reglocted

13.1 Properties of System using transks hun, and Roc:

pole-zero of ROC of s/m TF. HCS) provide following injurnation.

- a) prequency exponse
- b) amality.
- c) stability
- a) pequency euponse: i obtained by replacing 8=iw in the TF. HCS).
- 6) consality: If the Roc of LTIS/m must be entire region in the 8-planes to the right most pole than that sym is causal.
- e) Stability:
- \* If all the poles of H(s) must lie in the left tall of 8-plane, then the s/m is assual and stable.
- \* The system is marginally stable if notes of HCS) are on the 'in axis. \* No repealed pole should be in thy imaginam axis. Problems:
- an The transfer him. of 171 s/m is given by  $H(s) = \frac{as-1}{s^2+3s+2}$ . Determine the impulse response,

$$\frac{1}{8}(S) = \frac{8S-1}{S^{\frac{3}{2}}3S+2} = \frac{8S-1}{8+2}(S+1) = \frac{1}{8+2} + \frac{1}{8+1}$$

A = 5 , B = -3.

" H(s) = 5 - 3 - 3 - 1.

Taking inv. L7

hu) = 5 = 24 un - 3 et un)

impuly response.

On Determine the stady state exponse of the following stom to unit step excitation. H(s) = 
$$\frac{S+1}{S^2+3S+2}$$
.

$$= \frac{S+1}{(S^2+3S+2)} \cdot \frac{1}{S} = \frac{(S+1)}{S(S+2)} \cdot \frac{1}{S}$$

$$Y(S) = \frac{1}{8(S+2)} = \frac{A}{5} + \frac{B}{S+2}.$$

i) 
$$xar = e^{3L}act \Rightarrow xcs = \frac{1}{S+3}$$

$$= \frac{28^{2}+65+6}{8^{2}+35+2} \times \frac{1}{8+3} = \frac{2(28^{2}+65+6)}{(8+1)(5+2)(5+3)}$$

$$= \frac{A}{8+1} + \frac{B}{5+2} + \frac{C}{5+3}$$

On these whether the following Fignal are consider not

1)  $h(t) = e^{2t}u(t) \implies H(s) = \frac{1}{8+2} Roc: \sigma 7 - 2$ 



the Roc is to the right of right most pole s=-2 three the Rysiem is council.

$$|h(s)| = \frac{1}{s} |h(s)| = \frac{1}{s} |h(s$$

$$=\frac{-2}{(8-1)(5+1)}$$
, ROC:  $-1<\sigma<1$ 



The right most pole is all 8=1. The ROC is not be the right of the right most pole. Here the Rystem is not causal.

an Teil the ansality and slability of the system hill) se un tuo on hier & Eatury - et uch).

$$\frac{1}{(S+a)(S-1)} = \frac{2}{3+2} - \frac{1}{(S+a)} = \frac{2}{(S+a)(S-1)} - \frac{2}{(S+a)(S-1)} = \frac{2}$$

The right must pole is as s=1. The ROC is be the right of the right most pole. . . the s/m is council The pole S=1 which wer in right half of S-plant make the 8/m unstable.

an. Test the cousality and stability of slm whose 8/m punction à given a H(s) = 8-4 (St1) (St4).



The right most pole is as s=-1. The Rox is to the right of the right most pole. . The s/m is assal.

. All the poles are in left help of s-plane.

... The system is constable.

Test which we sim

It (S) =  $\frac{8-4}{8^2}$  is stable or not.

.. Then are bus poles depended as the origin. .: 8/m à unitable.

Determining the hequency euponse from poles and zeros!

Skp(i) from the poler-zeros, while the System function, H(s) skp(ii) frond H(s) | s= iw, we get the prop. euponse.

On Determine the hopency suponse of the dystem whose Pero of His is=0.5 and pulse of His all 8=-2 and s=-1

$$H(S) = \frac{8.0.5}{(S+2)(S+1)}$$

They susponse,  $H(jw) = \frac{jw-0.5}{(jw+1)} = \frac{jw-0.5}{j^2w^2+3jw+2}$ 

$$= \frac{j\omega - 0.5}{-\omega^2 + 30\omega + 2\omega}$$

solution of differential earns using Laplace hansfum:

Time diffuntiation property: with initial anditions  $\frac{dx(t)}{dt} \stackrel{L}{\longleftrightarrow} SX(S) - X(O)$   $\frac{d^2x(t)}{dt} \stackrel{L}{\longleftrightarrow} S^2X(S) - SX(O) - \frac{dx(O)}{dt}$   $\frac{d^2x(t)}{dt^2} \stackrel{L}{\longleftrightarrow} S^2X(S) - S^{-1}S(O) - \frac{d}{dt^{n-1}}X(O)$ .

cuithous initial conditions:

$$\frac{dx(t)}{dt} \leftrightarrow \frac{g_{\lambda}x(t)}{g_{\lambda}x(t)}$$

$$\frac{dx(t)}{dt} \leftrightarrow \frac{g_{\lambda}x(t)}{g_{\lambda}x(t)}$$

an By using LT, solve the following differential egis:  $\frac{d^{2}y(t)}{dt^{2}} + 3 \frac{dy(t)}{dt} + 2y(t) = \frac{d^{2}x(t)}{dt} \cdot \sqrt{y(0)} = 2 \frac{dy(0)}{dt}$ 

$$\frac{d^2y(t)}{dt}$$
 +  $3\frac{dy(t)}{dt}$  +  $2y(t) = \frac{dx(t)}{dt}$ 

Taking LT

$$[8^{9}y(s) - 2s - 1] + 3[8y(s) - 2] + 2y(s) = 8x(s).$$

$$V(S) \left[ S^{2} - 3S + 2 \right] = (2S + 7) + S \times (S)$$

$$V(S) = \frac{(2S + 7) + S \times (S)}{(S^{2} - 3S + 2)} = \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{(2S + 7) + S}{(S^{2} - 3S + 2)} \cdot \frac{$$

$$Y(S) = \frac{(25+7)(5+1)+5}{(5+1)(5^2-35+1)} = \frac{25^2+105+7}{(5+1)(5+2)}.$$

$$V(S) = \frac{2S^2 + 10S + 7}{(S+1)^2 (S+2)} = \frac{A}{(S+1)} + \frac{B}{(S+1)^2} + \frac{C}{(S+2)}.$$

$$4 = 7$$
 $(8+1)^2 - 5 = 7$ 
 $8+1 = 7$ 
 $8+1 = 7$ 
 $8+1 = 7$ 

Taking inverse Li

Con Find the System trensfer punction of the pollowing diff.

$$edv$$
:  $\frac{df_3}{df_{3}} + e \frac{df_5}{df_{3}} + 11 \frac{df_{11}}{df_{11}} + e h(r) = 3 \frac{df_5}{dx^{13}} + 4 \frac{df_{12}}{dx^{13}} + 2x(f)$ 

Towns LT Cruyled initial worditions?

हुआ छ ए छु के छा उस्या हो स्याप्त

System function, H(S) = 
$$\frac{V(S)}{X(S)} = \frac{8S^2 + 7S + 5}{8^9 + 6S^2 + 11S + 6}$$

Ean. Find the impulse exponse and the skp exponse of the 848km H(s) = 
$$\frac{8+2}{69+58+4}$$

Impulse eexponse:

$$\frac{H(S)}{680} = \frac{8+2}{8^{4}+55+4} = \frac{(5+2)}{(8+1)(5+4)} = \frac{A}{8+1} + \frac{B}{8+4}$$

$$A = \frac{1}{3} \quad \text{and} \quad B = \frac{2}{3}.$$

Step supone:

FOR SKP RUPONE, XU) = U(L) => X(S)= B

$$H(S) = \frac{Y(S)}{X(S)} \Longrightarrow Y(S) = H(S).X(S) = H(S).X(S)$$

$$= \frac{(8+2)}{(8+1)(s+4)} \cdot \frac{1}{s} = \frac{1}{s} + \frac{1}{s+1} + \frac{1}{s+4}$$

A. system is described by the tollowing. differential can: ddy(t) + 7 dy(d) + 12 y(d) = x(b). Øn∙ Dekumine the total eleponer of the 8/m to the 1/p rues-unes Phi initial Conditions au you)2-2 dyon:0 natural imponse (zero input suponse). dig(1) + 7 dy(1) + 12 y(1) = x(1). 8 y(s) - sy(o) - dy(o) +7 [8y(s) - y(o)] + 12y(s) = x(s) 84(S)+25-0+754(S)+14+124(S)=0 YCO[82+75+12] +14+2:5=14  $V(S) = \frac{-14-23}{8^2 + 78 + 12} = \frac{-14-28}{(8+3)(8+4)} = \frac{A}{8+3} + \frac{B}{8+4}$ Rul 8=-3 => -18 = A, Pul 8=-4 => -6=-B=> B26 -25-14 = A(S+4)+ B(S+3) Taking in, yes= -8 = 31 wh = = 41 (1) -> 0 .. Y(S) = -8 = +14 = +4 Found euponic (Zero State Leiponic). Y(3)[5°+75+12] = 1/5. YCS) > = 1 8 L82+75+12) = SLS+3) (S+4) = B+ B+ C 8+8 8+8 8+4

1 = A(s+3)(s+4) + Bs(s+4) + Cs(s+3)PUI = 0 = 2 | Da = 1 = 2 | Da = 2

Total superior 
$$g(x) = \frac{1}{12} \frac{1}{5} - \frac{1}{3} \frac{1}{5!3} + \frac{1}{4} \frac{1}{5!4}$$

Total superior  $g(x) = \frac{1}{12} u(x) - \frac{1}{3} e^{31} u(x) + \frac{1}{4} e^{31} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{1}{4} e^{41} u(x) = \frac{1}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{1}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{4} e^{41} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{3} e^{-1} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x) + \frac{25}{3} e^{-1} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} e^{-81} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{1}{12} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x) + \frac{25}{3} u(x)$ 
 $= \frac{25}{3} u(x) - \frac{25}{3} u(x$ 

On Consider the RLC CK Shown in given ty L= 14, C= IF and R: 2.5-2 Devive an expression of voltage vocts if the input it an unit skp. zero initial conditions. Assum

$$V(U) = V(U) \Rightarrow V(U) \Rightarrow$$

क्रिके प्रमाद्याहरू में के व्यक्ति

$$I(S) = \frac{1}{S(S+\frac{1}{S}+2.5)} \rightarrow 3$$

$$2 \Rightarrow V_0(S) = 2.5 I(S) = 8.6 I(S) \text{ from (3) in (4)}$$

$$- A + B = -$$

$$V_0(S) = \frac{2.5}{S^2 + 2.5S + 1} = \frac{2.5}{(3+2)(8+0.5)} = \frac{A}{S+2} + \frac{B}{S+0.5}$$

$$2.5_{2}$$
 A(S+0.5) + B(S+2)  
PWS=-2  $\Rightarrow$  -1.5A=2.5  $\Rightarrow$  A= $\frac{2.5}{1.5}$  =  $\frac{1}{3}$   
PWS=-0.5  $\Rightarrow$  1.58=2.5  $\Rightarrow$  B= $\frac{5}{3}$ 

$$V_0(s) = -\frac{5}{8} \frac{1}{8+2} + \frac{5}{3} \frac{1}{8+0.5}$$

Taking in.

Olump inv.
$$V_{0(L)} = -\frac{3}{3}e^{2l}u(L) + \frac{3}{3}e^{0.5l}u(L)$$



| H Sampling traversey less than thyanist property, is  I's 25m; thun the high property interfere with the  Irw property. This overlapping is called aliasing.  The effects of aliasing are:  * Distortion in signal removery is generated when  the high and low properties interfere with each other.  The data is lost and it cannot be removered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Different methods are available to avoid alwaying # To increase the sampling frequency & so that & > 25m.  * To put anii-aliasing filter before the signal sees it sampled.  Anti-alianing 4/Her!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{18g(t)}{x(t)} + \frac{x(t)}{x(t)} + \frac{x(t)}{x(t)}$ $\frac{18g(t)}{x(t)} + \frac{x(t)}{x(t)} + \frac{x(t)}{x(t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The anti-aliasing titles How was before the sampler is both and is both in the continuous time signal and is both the contract the cont |
| Signal Exponstruction: Sampled signed xerum is passed known a low pass pike, Hew, we get the signal xerum. The original signal row obtained by taking inverse of xew?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| i ·           |       | classmate &                                         |             |
|---------------|-------|-----------------------------------------------------|-------------|
| · ·           |       | Date'                                               |             |
|               |       |                                                     |             |
|               | Gn    | Find the Nyawist rate and Nyawist interval of the   |             |
|               | (300) | polinewing spinals. a) x(1) = 810, 200 TTL          |             |
| <del>-,</del> |       | to com 2 doot                                       | <u>.</u>    |
| :             |       | 27 Cm 2 200 T                                       |             |
| 38. 3         | İ     | fm 2 280 V/29                                       |             |
|               |       | = 100 42                                            |             |
|               |       | Mans pra = 29m = 2x100 = 200 1/2                    | v           |
|               | i i   | Nyoussi interest = / Nyor pro = 200 = 0.5×102 secs. |             |
| <del>,</del>  |       | b) x ch? 2 24 8 COS 100 T = + 2 810 200 T]          | T           |
| <br>          |       | <u> </u>                                            |             |
| , <del></del> |       | 2T4m = 200 T                                        |             |
|               | 207   | fm ≥ 100 H2.                                        |             |
| <u> </u>      |       | Bigg. pag = 2 fm = 200 Hz.                          |             |
| <u> </u>      |       | 144 merval = 1/200 sea.                             |             |
|               |       | ITP and a Commercial                                |             |
|               |       | 4TT COMM'8 2 (32); (3)                              | 1           |
|               |       | Com 2 100 T                                         | // Minutes  |
|               |       | Nuc. ha, offm = 2x 50 ≥ 100 Hz.                     | Z MCMBP.    |
| ķ.,           |       | Nua internal = 100 800.                             |             |
|               |       | d) xct7 = Sin 2005. Ti                              | No. No. No. |
| ¥             |       | ≥ 1-00\$A0071E                                      | * 47.07A    |
| -             |       | <u>8</u>                                            | Deligner.   |
|               |       | Rayura Araba T                                      | -           |
|               | · .   | WM2 400TT => OTTEM 2 400T                           |             |
|               |       | Ma. pra. 400 Hz 200 Hz                              | Custos      |
|               |       | Mag thouse = 1/400 accs                             | -           |
| į             |       |                                                     | N March 62  |
|               |       |                                                     | -           |
|               |       |                                                     | 4           |
|               |       |                                                     | +           |
|               |       |                                                     | 1           |



Transform techniques are an important tool in the analysis of signals and systems.

Fourier series: (CTFS and DTFS)

To the analysis of periodic signals.

Fourier transform: (DTFT and CTFT).

Fourier transform: analysis of aperiodic signals.

To the analysis of aperiodic signals.

Simple and systematic transforms:

Laplace transform:

To the analysis of antimous time signals

and systems.

Z-honsform:

The laplace transform has the advantage that it is a simple and systematic method and the complete is a simple and systematic method and the complete is a simple and systematic method and the complete is a shallow or abtained in one step and also the solution can be abtained in one step in the beginning

is a simple and systematic memod will in all the solution can be obtained in one step and also he solution can be introduced in the begining initials conditions can be introduced in the begining initials conditions can be introduced in the begining of the process it self. To solve the differential egns of the process in the process converted which are in the algebraic egns are manipulated into algebraic egns are manipulated in self-base transform, the algebraic egns are manipulated in self-base transform, the result obtained in that demain wing in sedemain and the result obtained in the time demain wing in converted back into time demain wing inverse toplace transform.

Z- transform has the advantage that it is a ... Simple and systematic method and the Complete Boln. can be obtained in one step and the initial conditions can be introduced in the beginning of the process itself. To solve difference eans which are in time domain, they are converted first into adjustmaic eans in z.d using z-transform, the adjustmaic eans are manipulation z-domain and the sessel obtained is converted back into time domain using inverse z-hamform.

The bilareral or two sided z- transform.

of a directe time signal scent is defined as:

X(Z) = \( \frac{2}{2} \) \( \text{scent} \) \( \frac{2}{2} \) \( \text{ransform of scent is defined} \)

where \( \text{Z is a complex volubble, as } \( \text{x(z)} = \frac{2}{2} \) \( \text{zent} \)

 $Z = U + \dot{J}V = \Upsilon e^{\frac{1}{2}}$ magnitude  $d Z, \Upsilon = \frac{1}{2} \frac{1}{2} \frac{1}{2} V^2$ phase  $d Z, \Omega = \frac{1}{2} \frac{1}{2} V^2$ 



A 2-D complex plane with values of u on hurizontal ours and the values of V on vertical ours on shown in tigure is called 2-plane-

# The set of z values for which the summation converges is called region of convergence (ROC) for the transform.

Region of convergence:

£.

Since z-mansform is an infinite power series, it exists only for those values of z Bis which the scries converge. The Roc of x(z) is the set of all values of z for which x(z) addin a brite value.

Z- transform and Roc of brite duration dequare

Right sided sequence:

Consider the sequence  $\alpha(n) = (1, 2, 2, 1)$ 

 $\chi(z) = \sum_{n=-\infty}^{\infty} \chi(n) \hat{z}^n = \sum_{n=0}^{\infty} \chi(n) \hat{z}^n.$ 

=  $x(x) z^{0} + x(x) z^{1} + x(x) z^{2} + x(x) z^{3}$ 

 $= 1 + 2z^{-1} + 2z^{-2} + z^{-3}$ 

In the above summation when z=0, all the terms except the proof term become infinite, ie xcz) converges for all values of z except at z=0.

The Roc for prite duration right sided Righal is entire z-plane except at z=0.

Mathematically Roc: 121>0

Left sided sequence:

Consider the sequence x(n) = (1, 2, 1, 3)  $x(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} = \sum_{n=-\infty}^{\infty} x(n) z^{n}$ 

N2 -3

 $X(2) = x(-3)z^3 + x(-2)z^3 + x(1)z' + x(0)$ = Z3+ 2Z9+ Z+3 In the above Rummation when z=00, all the terms except the last term become infinite ie xcz). Converger for all values of z except at z=00 .: The Roc for price duration left rided Right is entire z-plane except at 2=00 mathematically Roc: 12/20 Double Sided Sequence: (Two rided Sequence) A organal that has privile duralism on both left and right fides is known as double ficing in this case the Roc is the entire Z- plane 3/1. except at z=0 and z=00.

Consider the sequence x(n) = (2,1,1,2) $\chi(z) = \begin{cases} \chi(z) & = \begin{cases} \chi(z) & = \end{cases} \end{cases}$ = x(-2) z + x(-1) z + x(0) + x(1) z'  $= QZ^{2} + Z + 1 + QZ^{1}$ The above expression for xcz) becomes infinity

The above expression for xc2) becomes infinity.

The above expression for xc2) becomes infinity.

Out 2=0 and z=0. Hence the Roc is the result and z=0 and z=0.

This is explained mathematically by writing the Roc as, Roc: 0<121<0.

Z-hansform and Roc of intinik duration Equance!

Right sided C positive time exponential) scarrence:

A right vided intinik sequence is defined as

ie acn = an acn

$$x(z) = \sum_{n=-\infty}^{\infty} \alpha(n) z^{n}$$

$$= \sum_{n=-\infty}^{\infty} \alpha(n) z^{$$

Scanned by CamScanner

x(z) converges 
$$|b|^2 |z| |z|$$
 $\frac{|z|}{|b|} |z| \Rightarrow |z| |z|$ 

ie x(z) converges for all point internal to the circle of radius  $|b|^2 |z|$ . The rec of x(z) is the internor of the circle of radius  $|b|^2 |z|$ .

Double social require:

 $x(n) = a^n u(n) - b^n u(-n) \Rightarrow x(z) = \sum_{n=-\infty}^{\infty} x(n) z^n$ 
 $x(z) = \sum_{n=-\infty}^{\infty} [a^n u(n) - b^n u(-n)] z^n$ 
 $= \sum_{n=-\infty}^{\infty} a^n u(n) z^n - \sum_{n=-\infty}^{\infty} b^n u(-n) z^n$ 
 $= \sum_{n=-\infty}^{\infty} a^n u(n) z^n - \sum_{n=-\infty}^{\infty} b^n u(-n) z^n$ 
 $= \sum_{n=-\infty}^{\infty} (az^1)^n - \sum_{n=-\infty}^{\infty} (b^1 z)^n$ 
 $= \sum_{n=0}^{\infty} (az^1)^n - \sum_{n=0}^{\infty} (b^1 z)^n$ 
 $= \sum_{n=0}^{\infty} (az^1)^n$ 

## Summary:

seguen a

- haile night aided
- tinite ly sided a)
- tinite dauble sided 3)
- 4) intinite right sided
- 5) Intivite by sided
- 6) Injuite double rided.

ROC.

entire z-plane except.al 20 entire z-plane except at 2:00 entire 2-plane example di 2:082:00

exterior of the circle of radius à' ; 121 > 1al.

interior of the circle of radius b', 121×161 Region blw the two circles of radius à q b', where 16171al, and 121212161

Properties of Roci

- 1) The Roe is a sing in the z-plane centered of
- a) The Roc connot contain any poles.
- 3) If xin is a price sight rided oxquent , then the, Roe is the entire z-plane except as z=0.
- A) y sun) is a brike by mided &covence, then the noc is the online z-plane except as 2=00
- 5) If ren is a prite double rided sequence, then the Roc is the entire 2- plane except at z=0 and z=0
- 6) Il xun in an infinite double rided requence, then the NOL will consist of a ring in the z-plane bounded on the interior and exterior by a pole.
- 7) The Roc of a Stable Byskm contains the unit chile.
- 8) The Roc must be a connected segion.

Relation between z-hansform and FT.

Z-hansform and FT.

Z-hansform and FT.

$$x(z) = \sum_{n=-\infty}^{\infty} x(n) z^n$$

Put  $z = e^{in}$ 
 $x(e^{in}) = \sum_{n=-\infty}^{\infty} x(n) e^{-in}$ 

Froblems:

An) Find the z-hansform (of the hollowing organism)

A)  $x(n) = u(n)$ 

b)  $x(n) = u(n)$ 

c) 
$$\alpha(n) = e^{i - n n} u(n)$$

d) 
$$x(n) = u(-n)$$

h) 
$$x(x) = (2, -1, 0, 3, 4)$$

i) 
$$x(n) = (5,3,-2,0,4,-3)$$

न याती.

a) 
$$x(n) = u(n)$$

$$\chi(z) = \frac{2}{3} \chi(z) $

$$=\frac{1}{1-z^{-1}}=\frac{Z}{Z-1}$$

121 >1.

b) 
$$x(z) = g(z)$$
  
 $x(z) = \frac{z}{z} x(z)$   $z^{n} = \frac{z}{z} g(z)$   $z^{n} = \frac{z}{z} g(z)$ 

= 1-2 Roc: entire Ziplane.

$$x(n) = e^{\int_{-\infty}^{\infty} x(n)} z^{n} = \sum_{n=-\infty}^{\infty} e^{\int_{-\infty}^{\infty} x(n)} z^{n}$$

$$x(z) = \sum_{n=-\infty}^{\infty} x(n) z^{n} = \sum_{n=-\infty}^{\infty} e^{\int_{-\infty}^{\infty} x(n)} z^{n}$$

$$= \underset{n=0}{\overset{\sim}{\otimes}} e^{j\Omega_0 n} z^{-n} = \underset{n=0}{\overset{\sim}{\otimes}} (e^{j\Omega_0} z^{-1})^n = \frac{1}{1 - e^{j\Omega_0} z^{-1}}$$

$$\frac{10}{10} = \frac{Z}{Z - e^{i\Omega_0}}$$

X(z) converges if 
$$|\dot{z}| = |\dot{z}| = |$$

d) 
$$x(z) = \frac{y(z-n)}{y(z-n)} = \frac{y(z-n)}{y(z-$$

$$z = \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$

X(2) converges if 12/x1

.: ROC: 12/1

$$x(z) = \overline{a}^n u(-n-1)$$

$$x(z) = \sum_{n=-\infty}^{\infty} x(n) \overline{z}^n$$

$$\chi(z) = \frac{\omega}{2} \chi(z) = \frac{\omega}{2} a^{-n} u(-n-1) z^{-n}$$

$$\chi(z) = \frac{\omega}{2} \chi(z) = \frac{\omega}{2} a^{-n} u(-n-1) z^{-n}$$

$$= \sum_{n=-\infty}^{-1} a^n z^n = \sum_{n=-\infty}^{-1} a^n z^n$$

$$\geq \frac{\infty}{2} a^{2} z^{n} = \frac{\infty}{2} (az)^{n} - 1$$

$$\frac{1}{1-az} - 1 = \frac{1-(1-az)}{1-az}$$

$$= \frac{\partial Z}{1-\partial Z} = \frac{-Z}{Z-\dot{\alpha}}$$

g) 
$$\alpha cm = \alpha cm - \alpha cn - 6$$

$$= \sum_{n=-\infty}^{\infty} u(n) z^{n} - \sum_{n=-\infty}^{\infty} u(n-6) z^{n}$$

$$= \sum_{n=-\infty}^{\infty} u(n) z^{n} - \sum_{n=-\infty}^{\infty} u(n-6) z^{n}$$

$$= \sum_{n=-\infty}^{\infty} u(n) z^{n} - \sum_{n=-\infty}^{\infty} u(n-6) z^{n}$$

$$= \underbrace{\frac{8}{2}}_{\Omega=0} z^{-1} - \underbrace{\frac{8}{2}}_{\Omega=0} z^{-1}$$

$$\frac{5}{2} \sum_{n=0}^{\infty} \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}$$

ucn)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^n$$

W. K. T 
$$z \left\{ e^{i\Omega n} u(n) \right\} = \frac{1}{1 - e^{i\Omega}z^{1}}$$

$$= \left[ e^{i\Omega n} + e^{i\Omega n} \right] u(n)$$

$$= \left[ e^{i\Omega n} + e^{i\Omega n} \right] u(n)$$

$$= \frac{1}{2} \left[ e^{i\Omega n} u(n) z^{n} + \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right] u(n) z^{n}$$

$$= \frac{1}{2} \left[ e^{i\Omega n} u(n) z^{n} + \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right] u(n) z^{n}$$

$$= \frac{1}{2} \left[ e^{i\Omega n} u(n) z^{n} + \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right] u(n) z^{n}$$

$$= \frac{1}{2} \left[ e^{i\Omega n} u(n) z^{n} + \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right] \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + z(z-e^{i\Omega}) + z(z-e^{i\Omega}) \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + z(z-e^{i\Omega}) + z(z-e^{i\Omega}) \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + e^{i\Omega n} \right]$$

$$= \frac{1}{2} \left[ e^{i\Omega n} + $

ROC: 12/>1

Go Find the z-transpire of 
$$x(n) = 8in \Omega n \text{ unit}$$

$$x(2) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} = \frac{1}{2i} \sum_{n=-\infty}^{\infty} \left[ e^{inn} e^{inn} \right] \text{ unit}$$

$$= \frac{1}{2i} \left\{ \sum_{n=-\infty}^{\infty} e^{inn} u(n) z^{-n} + \sum_{n=-\infty}^{\infty} e^{inn} u(n) z^{-n} \right\}$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z}{z - e^{in}} \right] = \frac{1}{2i} \left[ \frac{z(z - e^{in}) - z(z - e^{in})}{z - e^{in}} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - ze^{-n} - ze^{-n}} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - ze^{-n} - ze^{-n}} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z^{2} - z(e^{in} + e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z(z - e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z(z - e^{in}) + 1} \right]$$

$$= \frac{1}{2i} \left[ \sum_{n=-\infty}^{\infty} \frac{z(z - e^{in}) - z(z - e^{in})}{z(z - e^{in}) + 1} \right]$$

On Find the 2 Hansform and Roc of xCZ) 8 for xcn) = 3(\frac{5}{4})^nucn) + 2(-1/3)^nucn). Also bind pole-zero localion. W. K. T an ucn (Z)  $(5)^n u(n) \stackrel{2}{\longleftrightarrow} \frac{1}{1-5}z^1$  $(-\frac{1}{3})^{n}$  u(n)  $\stackrel{z}{\longleftrightarrow} \frac{1}{1-\frac{1}{3}z^{-1}} = \frac{1}{1+\frac{1}{3}z^{-1}}$  $\frac{1}{1 - \frac{5}{7}} \frac{7}{1 + \frac{3}{2}} = \frac{1}{1 + \frac{1}{3}} \frac{1}{2}$ = 3 <del>Z</del> + 2 <del>Z</del> + <del>3</del> <del>Z</del> + <del>3</del>  $= \frac{3z(z+\frac{1}{3})+2z(z-\frac{1}{3})}{(z-\frac{1}{3})(z+\frac{1}{3})} = \frac{3z^2+z+2z^2-\frac{1}{3}z}{(z-\frac{1}{3})(z+\frac{1}{3})}$ 317 4 315 3514  $\frac{z}{(z-\frac{2}{7})(z+\frac{1}{3})} = \frac{z(5z-\frac{2}{7})}{(z-\frac{2}{7})(z+\frac{1}{3})}$  $X_1(z)$  converger if  $|\frac{1}{3}z^2| < 1 \Rightarrow |z| > \frac{1}{3}$ , |z| > 0.71X2(2) Converger if 1 = | 12/> => 12/> => 12/> => 12/> => 12/> : x(2) converger if 121 > 0.71 .; Roc: 121 > 0.71 polu:  $Z = \frac{1}{7} = 0.71$  and  $Z = -\frac{1}{3} = -0.33$ . zeros: Z=0 and  $5Z=\frac{3}{35}=0.08$ Pole zero diagram: Roc  $Z=\frac{3}{35}=0.08$ -033 0.08 0.71 >U

Properties of z-Hanslorm: linually: 11 a(n) (=> x(cz) ١) asserting  $x(n) = ax_1(n) + bx_2(n) \stackrel{Z}{\Longleftrightarrow} x(2) = ax_1(2) + bx_2(2)$  $X(Z) = \sum_{n=-\infty}^{\infty} x(n) Z^{n} = \sum_{n=-\infty}^{\infty} [ax(n) + bx_{2}(n)] Z^{n}$ a 多文(の) ごりも きな(の)ごり a x1(2)+ bx2(2). Time shipping: 4 a(n) (2> x(cz) then  $x(n) = x_1(n-K) \stackrel{Z}{\Longleftrightarrow} x(Z) = a z^K x_1(Z)$ . Proof:  $\chi(z) = \sum_{n=-\infty}^{\infty} \chi(n) z^n = \sum_{n=-\infty}^{\infty} \chi(n-k) z^n$ PUL a M= n-K .: X(Z) = 2 x(m) Z Page 1/1 => U = W+K נו מעך גנח-ש) צנח+ש)  $= z \sum_{m=1}^{K} x_i(m) z^m = z^K x_i(z).$ 3. Time Ruersal: 11 x,(n) (2) x,(z) (ii) Then  $x(n) = x(-n) \stackrel{Z}{\rightleftharpoons} x(z) = x((z'))$  $\frac{1}{2}$   $\frac{1}$ Put m = -n :  $\chi(z) = \frac{2}{m^2 \omega} x_i(m) z^m = \frac{2}{2} x_i(m) (z^{-i})^m$ A. multiplication by an exposurbal seq: If  $x_1(n) \stackrel{>}{\Longleftrightarrow} x_1(z)$  thun  $x(n) = a^n x_1(n) \stackrel{>}{\Longleftrightarrow} x(z) = x_1(a^1 z)$ Mod:  $\chi(z) = \sum_{n=-\infty}^{\infty} \chi(n) z^n = \sum_{n=-\infty}^{\infty} \alpha_n \chi(n) z^n$ =  $\sum_{n=-\infty}^{\infty} x_i(n) (a^{-1}z)^n = x_i(a^{-1}z)$ . 5. multiplication by n: 14 x(cn) => x(cs) Proof: X(2):  $Z = x(n) Z^n$ when  $x(n) = ax_1(n) Z = x(z)$ : -Z dx(z)of  $Z = x(n) Z^n$  $= \sum_{n=-\infty}^{\infty} n x_{i}(n) z^{n} = \sum_{n=-\infty}^{\infty} x_{i}(n) n \cdot z^{i} z^{n-1} = z \sum_{n=-\infty}^{\infty} x_{i}(n) (-nz^{n})$  $z - z \frac{d}{dz} \sum_{n=-\infty}^{\infty} x_i(n) \frac{d}{dz} z^n.$   $= -z \frac{d}{dz} x_i(n) \frac{d}{dz} z^n.$ 

 $\frac{dx(z)}{dz} = \sum_{n=-\infty}^{\infty} x_n(n) \frac{1}{dz} \frac{1}{z^n} = \sum_{n=-\infty}^{\infty} \frac{1}{2} x_n(n) + n \frac{1}{2} \frac{1}$  $= \frac{dx(z)}{dz} = -\frac{z}{nz-\omega} nx(n) z'z^n = -z'z' z' (nx(n)) z''$  $-z \frac{dz}{dz} = \sum_{n=-\infty}^{\infty} [uxtni] z_n$  $n_{x(n)} \stackrel{2}{\rightleftharpoons} - 2 \frac{dx_{1}(z)}{dz}$ 6. Convolution: If x,(n) => x,(z) and x2(n) => X2(z) then xcm = xcm + x2cm (Z) x(z) = x(cz). x2(z) Must:  $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^n = \sum_{n=-\infty}^{\infty} [x_i(n) * x_a(n)] z^n$ = 2 [ 2 x, ck) x2(n-k)] 2", charging the order of Rummalian  $\chi(2) = \sum_{K=-\infty}^{\infty} \chi_1(K) \sum_{n=-\infty}^{\infty} \chi_2(n-K) z^n$ lm w=v-k ⇒ v=w+k.  $\chi(z) = \sum_{K=-\infty}^{\infty} \chi_{i}(K) \sum_{m=-\infty}^{\infty} \chi_{i}(m) Z$  $=\underbrace{\underbrace{\underbrace{2}}_{K=-\infty}^{2}}_{K=-\infty}^{2}(K)\underbrace{\underbrace{2}}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M=-\infty}^{2}(K)\underbrace{2}_{M$ X, (2) X2(2) 7. Initial value theorem: 17 xcm (2> xcz) Thus  $x(0) = L_1 x(z)$ . Prod: X(z): Z xm)zn = 2000) = + x(1) z + x(2) z + .... As z > 00, all the terms, except on xco). .. Lt x(Z) = Lt & x(n) zn = x(o). ie x(o) = Lt x(z).
Z+00 8. Final value theorem: 4 xcn (Z) xcz). Then.  $\alpha(\omega) = \underset{z \to 1}{\text{Li}} (z-1) \times (z)$ X(Z) = 2 x(n) zn seq. x(n+1)-x(n) and take its z-transpers

10  $z\{x(n+1)-x(n)\}=\sum_{n=0}^{\infty}[(x(n+1)-x(n))]^{-n}$ =  $\left[\alpha(1) - \alpha(0)\right] z^{0} + \left[\alpha(2) - \alpha(1)\right] z^{1} + \left[\alpha(3) - \alpha(2)\right] z^{2}$ + [x(00)-x(00)] 4 - - - 40(4000) By using shifting properly.  $x(n+m) \iff z^m \left[ x(z) - \sum_{k=0}^{m-1} x(k) z^k \right]$  $x(n+1) \stackrel{Z}{\longleftrightarrow} Z[x(z) - 2x(0)] = Zx(z) - zx(0)$  $Z\{x(n+1)-x(n)\}=Zx(z)-Zx(0)-x(z)$ =  $(Z-1) \times (Z) - Z \times (0) \longrightarrow \textcircled{2}$  $(z-1) \times (z) = [x(1)-x(0)] + [x(2)-x(1)] = [x(1)-x(0)] =$ + · · · · [x(w)-x(w-1)] z Taking limit z>1 on both rider.  $L1(z-1) \times (z) - x(0) = x(x) - x(0) + x(3) - x(1) + x(3) - x(1)$ + ./... xco) - xco/1).  $x(\infty) - x(0)$ . X(00)=

Time shipping (Time delay) property: Il xem à on sided sequence a(n-m) = Zm [x(z)+ Bx(-K)zK] ii)  $x(x) = \sum_{k=0}^{\infty} \left[ x(z) - \sum_{k=0}^{\infty} x(x) z^{-k} \right]$  $Z-handram d x(n-m) = \sum_{n=-\infty}^{\infty} x(n-m) Z^{n}$   $= \sum_{n=-\infty}^{\infty} x(n-m) Z^{m} Z^{n}$   $= \sum_{n=-\infty}^{\infty} x(n-m) Z^{m} Z^{n}$   $= \sum_{n=-\infty}^{\infty} x(n-m) Z^{n} Z^{n}$ mod:  $= \frac{Z}{m} \sum_{n=-\infty}^{\infty} x(n-m) Z$ Pul  $J=n-m \Rightarrow x(L) Z$   $\therefore = Z^{m} \stackrel{\%}{\underset{h--m}{\sim}} x(L) Z$  $z = z^{m} \begin{bmatrix} 2 \times (1) z^{1} + \frac{1}{2} \times (1) z^{1} \end{bmatrix}$ POS JEGIK : =028 6 A  $= Z^{-m} \left[ \chi(z) + \frac{2}{2} \chi(z) z^{-1} \right]$ := zm [x(z) + \( \frac{1}{2} \times (-k) \) zk ] = = m [x(z) + 2 x(-K) 2K]

$$x(n+m) \stackrel{Z}{\rightleftharpoons} z^{m} \left[ x(z) - \frac{m-1}{k=0} x(x) z^{-k} \right]$$

$$x(n+m) \stackrel{Z}{\rightleftharpoons} x^{m} \left[ x(z) - \frac{m-1}{k=0} x(x) z^{-k} \right]$$

$$x(n+m) \stackrel{Z}{\rightleftharpoons} x^{m} \left[ x(z) - \frac{m-1}{k=0} x(x) z^{-k} \right]$$

$$= \sum_{n=-\infty}^{\infty} x(n+m) z^{n} - (n+m)$$

$$=$$

On. Find the z-manyorm of the hollowing sequences and Roc using the properties of z-hangorm.

1) 
$$x(n) = \theta(n-n_0)$$
.

elan (Z>)

By applied him shitted broberty are des

ROC: 121>0

u(n) 2 -1

By applying him shipping property  $u(n-n_0) \stackrel{Z}{\longleftrightarrow} Z^{n_0} \stackrel{Z}{\longrightarrow} = \stackrel{Z}{\overset{Z}{\longrightarrow}} (n_0-1)$ 

ROC: 1∠1Z1∠∞

 $a^n u(n) \stackrel{Z}{\longleftrightarrow} \frac{Z}{Z-a}$ 

$$a^{n+1}u(n+1) \stackrel{Z}{\longleftrightarrow} \frac{Z'Z}{z-a} = \frac{Z^2}{z-a}$$

Roc: la/</21 <∞

4) 
$$x(n) = a^{n-1}u(n-1)$$

 $a^n u(n) \stackrel{Z}{\longleftrightarrow} \frac{Z}{Z-\alpha}$ 

$$\alpha^{n-1}u(n-1) \stackrel{Z}{\longleftrightarrow} \frac{\overline{z}^{1}Z}{\overline{z}-\alpha} = \frac{1}{z-\alpha} Rx: |\alpha| < |z| < \infty$$

5) xcn= (/2) (uen)

By using multiplication by exponential seq. purperty, xcm= alumn => xcz) = x (a'z)

$$(\frac{1}{2})^n u(-n) \stackrel{Z}{\longleftarrow} \frac{1}{1-(\frac{1}{2})^2 Z} = \frac{1}{1-2Z}$$

Roc: 12/12/XI

ROC: 1214 发

6) 
$$x(n) = n u(n)$$
.

 $u(n) \stackrel{Z}{\longleftrightarrow} \frac{Z}{Z-1}$ 

By using multiplication by 'n' property.

 $n u(n) \stackrel{Z}{\longleftrightarrow} -Z \frac{d}{dz} \frac{Z}{Z-1} = -Z \frac{(Z-1)^2}{(Z-1)^2}$ 
 $= \frac{Z}{(Z-1)^2}$ 

$$n u(n) \stackrel{Z}{\longleftrightarrow} \frac{Z}{(Z-1)^2}$$

4) 8how they 
$$u(n) + u(n-1) = n u(n)$$

$$u(n) \stackrel{Z}{\longleftrightarrow} \frac{Z}{Z-1} \quad u(n-1) \stackrel{Z}{\longleftrightarrow} \frac{1}{Z-1}$$

$$x_1(n) + x_2(n) \stackrel{Z}{\longleftrightarrow} x_1(z) \cdot x_2(z)$$

: 
$$u(n) + u(n-1) \stackrel{Z}{\longleftrightarrow} \frac{Z}{Z-1} = \frac{Z}{(Z-1)^2}$$

$$W.K.T$$
  $n$   $u(n)$   $\stackrel{Z}{\longleftrightarrow}$   $\frac{Z}{(Z-1)^2}$ 

$$\frac{Q}{\chi(n)} = \frac{n(-1/4)^n u(n)}{\chi(n)} + (-1/4)^{-n} u(-n).$$

Solution (-1/4) uch) 
$$\stackrel{Z}{\longleftarrow} \stackrel{Z}{\longrightarrow} \frac{Z}{Z+\frac{1}{4}}$$
.

Such)=  $\int (-1/4)^n uch) \stackrel{Z}{\longleftarrow} \frac{Z}{Z+\frac{1}{4}}$ .

Such)=  $\int (-1/4)^n uch) \stackrel{Z}{\longleftarrow} \frac{Z}{Z+\frac{1}{4}}$ .

$$\underline{X_{1}(z)}$$
 =  $-z \frac{(z+4)-z}{(z+4)^2} = \frac{-4z}{(z+4)^2}$  Rol:  $|z|/4$ 

$$(4/6)^{-1}u(-n) \stackrel{Z}{\longleftrightarrow} \frac{Z^{-1}}{Z^{-1}d^{-1}} = \frac{1}{1+16} = \frac{1}{$$

$$X(z) = \frac{-\frac{1}{4}z}{(z+\frac{1}{4})^2} \cdot \frac{+6}{(z+6)}$$

On. Find the initial and trad value of the tollowing tunden.

$$X(Z) = \frac{Z}{4Z^2 - 5Z11}$$
 Roc: |Z|>1

$$= \frac{2}{290} \frac{2}{4z^{2}-5211}$$

$$= \frac{1}{290} \frac{7}{2(4-\frac{5}{2}+\frac{1}{2^{2}})}$$

$$= \frac{1}{42^2-52-1} = \frac{1}{4(1-\frac{1}{4})}$$

$$=\frac{1}{4\times 3/4}=\frac{1}{3}//$$

On. Find 
$$\alpha(\infty)$$
, if  $\chi(z) = \frac{z_{41}}{(z_{20}-0.6)^{6}}$ 

$$\chi(\omega)$$
: Lt (Z-1)  $\chi(2)$ 
 $z \neq 1$ 
 $z \neq 0$ 

$$2(\infty)$$
:  $200)$  LJ  $(Z-y)$   $(2+2)$   
 $2+1$   $4(z-1)$   $(2+0-1)$   
 $2\frac{3}{4\times 1-7} = \frac{3}{6\cdot 8}$ 

Inverse syskm

The inverse z-hansform of the

x(2) is depried as

$$x(n) = \frac{1}{2\pi i} \int x(z) z^{n-1} dz.$$

For yearing less inded seq. the NCZ)
and DCZ) must be put in availabling power of Z
begons performing lang durings.

There are four methods that are flen and for the evaluation of inverse z-transform.

- -> long division method (power series method).
- -> partial traction method
- -> Residue method
- -> convolution method.
- 1) long division method:

X(Z) = N(Z)
D(Z).

\* For gelling right rided

beq., the N(Z) and D(Z) must

be put in descending paper

of Z. before performing long actions.

using long division method, and the Z-transform

 $0 | X(z) = \frac{z}{zz^2 - 3z + 1}$ 

 $ROC: |Z| \xrightarrow{\text{total}} > 1$   $X(z) = \sum_{n=0}^{\infty} x(n) z^n = x(n) + x(n)z + x(n)z^2 + \cdots$ 

Since Roc 12171, xcm must be a right sided sq.

$$\frac{1}{2}z^{2} + \frac{3}{4}z^{2} + \frac{3}{8}z^{3} + \cdots$$

$$\frac{1}{2}z^{2} + \frac{3}{4}z^{2} + \frac{3}{8}z^{3} + \cdots$$

$$\frac{3}{2}z^{2} + \frac{1}{4}z^{2}$$

$$\frac{3}{2}z^{2} + \frac{3}{4}z^{2}$$

$$\frac{3}{2}z^{2} + \frac{3}{4}z^{2}$$

$$\frac{3}{2}z^{2} + \frac{3}{4}z^{2}$$

$$\frac{3}{4}z^{2} - \frac{3}{4}z^{2}$$

X(Z) = Gudient of long dirigion

$$= \frac{1}{2}z^{-1} + \frac{3}{4}z^{-2} + \frac{7}{8}z^{-3} + \cdots \longrightarrow 0$$

Comparing 1 and 1.

$$suin = (0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots)$$

On using long division method, bind the inverse. 
$$Z$$
-transport of  $X(Z) = \frac{Z}{2Z^2-3Z+1}$ , Roc:  $|Z| < \frac{1}{2}$ .

Sinu Roc:  $121 \times \frac{1}{2}$ , xin must be a lift mided seq. The N(2) of D(2) must be put in ascending power of Z.  $(2) = \frac{2}{2} x(n) z^{2} = \frac{1}{2} + x(-3) z^{3} + x(-2) z^{2} + x(-1) z^{3} + x(-1)$ 

X(Z) = Quotient of long division.

= 
$$... + 15z^4 + 7z^3 + 3z^2 + z \longrightarrow 2$$

@ baco @ primagras

$$\alpha(n) = (---, 15, 7, 3, 1, 0)$$

On. By ruing long division method determine the inverse z-mansform of  $x(z) = \frac{1+2z^{-1}}{1-2z^{-1}+z^{-2}}$  when a) each is causal and b) each is anticouncil.

$$X(z) = \frac{1+2z^{1}}{1-2z^{1}+z^{2}} = \frac{z^{2}+2z}{z^{2}-2z+1} = \frac{N(z)}{D(z)}$$

a) of setting and causal causal seq, NCZ) of DCZ) must be put in desunding power of Z. X(Z)=x0+x(nz+x0)z=2.

X(Z): Quotient of long division.

Must be put in asunding power of z.

$$\chi(z) = \sum_{n=-\infty}^{\infty} \chi(n) z^n = \dots \chi(-4) z^{\frac{1}{2}} + \chi(-3) z^{\frac{1}{2}} + \chi(-2) z^{\frac{1}{2}} + \chi(0)$$

1129-825

X(Z): Bustient of long direion

Comparing 10 and 10

wing long division nuthed that the inv z-transfer of x(2) =  $\frac{Z+1}{Z^2-8Z+2}$  when a) even is caused b) x(n) is caused

1) Partial tradition method:

$$\chi(z)$$
  $\chi(z)$ 

y xen i

1) 
$$\frac{z}{z-a}$$

a<sup>n</sup>uin)

121> lal + camal

$$\frac{z}{z-a}$$

- a ui-n-i) 121 < lal < anti aina

3) 
$$\frac{Z}{Z-1}$$

uin)

12121

4) 
$$\frac{Z}{(2-a)^2}$$

U a\_1 (T(U))

5) 
$$\frac{Z}{(z-a)^3}$$

5) 
$$\frac{Z}{(Z-a)^3}$$
  $\frac{\Omega(n-1)}{2!}a^{n-2}u(n).$ 

On find the inverse Z-transform of  $x(z) = \frac{1-\frac{1}{3}z^{-1}}{(1-z^{-1})(1+2z^{-1})}$ 

ROC: 12/72

$$X(Z) = \frac{1 - \frac{1}{3}Z^{-1}}{(1 - z^{-1})(1 + Qz^{-1})} = \frac{Z(Z - \frac{1}{3})}{(Z - 1)(Z + Q)}$$

$$\frac{X(Z)}{Z} = \frac{(Z - \frac{1}{3})}{(Z - 1)(Z + 2)} = \frac{A}{Z - 1} + \frac{B}{Z + 2},$$

Z-== A(Z+2)+B(Z-1)

PULZ=1 => 1-3=3A => == 8A => A = 8/9. 

Taking inverse z- manipim:

$$\alpha(n) = \frac{2}{9}\alpha(n) + \frac{7}{9}(-2)^n\alpha(n) //$$

On. Find the inverse z-hary form of x(z)= 72-23 . ROC: 12/74

$$x(z) = \frac{7z-23}{(z-3)(z-4)}$$

$$\frac{X(Z)}{Z} = \frac{7Z-23}{Z(Z-3)(Z-4)} = \frac{A}{Z} + \frac{B}{Z-3} + \frac{C}{Z-4}$$

$$\frac{X(z)}{Z} = \frac{-29}{12} \frac{1}{Z} + \frac{2}{3} \frac{1}{Z-3} + \frac{5}{4} \frac{1}{Z-4}$$

Taking inverse z- haryfum.

$$\frac{1}{12}g(n) + \frac{2}{3}g(n) + \frac{5}{4}g(n)$$
.

Determine the annual righed occur howing the z-transform

$$X(2) = \frac{1}{(1+z')(1-z')^2}$$

$$X(z) = \frac{z^3}{(z+1)(z-1)^2}$$

$$\frac{X(2)}{Z}$$
,  $\frac{Z^2}{(Z+1)(Z-1)^2}$  =  $\frac{A}{(Z+1)}$  +  $\frac{B}{(Z-1)}$  +  $\frac{C}{(Z-1)^2}$ .

$$\frac{Pul z=1}{Z^{2}} = \frac{1}{P(Z-1)^{2}} + B(Z+1)(Z+1) + C(Z+1)$$

$$(Z+1)(Z-1)^{2} = (Z+1)(Z-1)^{2}$$

$$z = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A = 1 - A =$$

$$X(z) = \frac{1}{4} \frac{Z}{(z+1)} + \frac{3}{4} \frac{Z}{(z-1)} + \frac{1}{2} \frac{Z}{(z-1)^2}$$

Taking inverse z-manspam.

Taking inverse z-manypam.

= 
$$\frac{1}{4}(-1)^n u(n) + \frac{3}{4} u(n) + \frac{1}{2} n u(n)$$

=  $\frac{1}{4}(-1)^n u(n) + \frac{3}{4} u(n) + \frac{1}{2} n u(n)$ 

tind the inverse an using partial traction method , ROC 12174  $\sqrt{z}$ - handpum  $\sqrt{(z-2)} = \frac{z(z^2+z-30)}{(z-2)(z-4)^3}$ 

$$\chi(2) = \frac{2(2-5)(2+6)}{(2-2)(2-4)^3}$$

$$\frac{X(z)}{z} = \frac{(z-5)(z+6)}{(z-2)\cdot(z-4)^3} = \frac{A_1}{z-2} + \frac{B}{z-4} + \frac{c}{(z-4)^2} + \frac{D}{(z-4)^3}$$

Pul 2:2= A = 3, Pul z=4=> 6=-5, Poto &

A4=B A3-C

AQ-D

Compare the Coeff. of  $z^2 \implies \cos 8a \cdot C - 10B = 37$ .ec-38 B=138 compare the coeff. of Z => B.

c= 7 and A=-3

$$X(z) = 3\frac{z}{z-2} - 9\frac{z}{z-4} + 7\frac{z}{(z-4)^2} - 9\frac{z}{(z-4)^3}$$

Taking inverse

 $x(cn) = 3 2^{n}u(cn) - 3 4^{n}u(cn) + 7 n 4^{n-1}u(cn) - 3 4^{n}u(cn) + 4 n 4^{n-1}u(cn) - 3 4^{n}u(cn)$ 

= 3 2 u(n) - B 4 u(n) + 
$$\frac{7}{4}$$
 n 4 u(n) -  $\frac{5}{32}$  n (n-1) 4 u(n)

Determine the inverse Z-transpirm of  $x(z) = \frac{5z^{1}}{(1-3z^{1})}$  for all possible Rocs.

$$\chi(z) = \frac{5z^{1}}{(1-2z^{1})(1-3z^{1})} = \frac{5z}{(z-2)(z-3)}$$

$$\frac{X(z)}{z} = \frac{5}{(z-2)(z-3)} = \frac{A}{z-2} + \frac{B}{z-3}$$

5 = A(Z-3) + B(Z-2)

PW 2=2 => 5=-A => A=5, PW Z=3 => 5= B=> B=> B=5

$$\frac{X(z)}{z} = -5\frac{1}{2-2} + 5\frac{1}{2-3}$$

$$X(z) = -5 \frac{2}{2-2} + 5 \frac{2}{2-3} \rightarrow \mathbb{O}$$

when text the Roc is 121>3, then suns is caused and all the two terms in earn to the causal terms.

$$\therefore x(n) = -5 a^{2} u(n) + 5 a^{3} u(n) /$$

when the Roc  $\dot{u}$  |z| < 2, then the signal econ  $\dot{u}$  and all the two terms in eqn() are anticaucal terms.  $\dot{x}$   $\dot{x}$   $\dot{x}$   $\dot{x}$   $\dot{x}$   $\dot{y}$   $\dot{y}$ 

Other the Roc is 2x121x3, then it signal is low orded. The pole z=2 provides causal term and the pole z>8 provides the anticausal term.

$$\alpha = -5 2^n u(n) = 5 8^n u(n-1)$$



Crisi con

Gen. Find the inverse z-transform of  $x(z) = \frac{z}{8z^2-4z+1}$ 

for all possible ROCs.

 $=\frac{Z}{\left(z^2-\frac{4}{3}Z+\frac{1}{3}\right)}$ 

 $\chi(z) = \frac{z}{(3z^2-4z+1)} = \frac{z}{(z-1)(z-1/3)}$ 

1-3 3-1.2

1/3-1 1-3,

 $\frac{X(z)}{z} = \frac{1}{(z-1)}(z-\frac{1}{3}) = \frac{1}{(z-1)} + \frac{1}{2-1/3}$ 

1= B(Z-年)+B(Z-1)

Pul Z= 1 => 1= (1-15) A=> 1= 3/2.

Pur Z=1/3 => 1= B(1/3-1) => 1= -8/8 => B= -8/2

 $\frac{1}{2} = \frac{3}{2} = \frac{1}{2} = \frac{1}$ 

X(Z), 3 = -3 = 2-1/3

when Roc is 12/71, then the s/1 xcn) is causal.

and all the loss terms are causal terms.

 $\therefore x(n) = \frac{3}{2}u(n) - \frac{3}{2}(x_3)^n u(n).$ 

when Roc is 12/23, then the s/1 xcm is anticular

and all the bus known are anticouncil temps.  $\therefore x(n) = \frac{3}{2} - 11^{3} u(-n-1) - \frac{3}{2} - (\frac{1}{2})^{3} u(-n-1)$ .

=  $-3/2\pi(-1) + \frac{3}{2}(1/3)^{3}\pi(-1)$ 

<del>√y,×, 7</del> u.

when Roc is 1/3×121×1, hun the sti seens of two sided. The pole z=1/3 provides caused been and the pole z=1 provides the anticarrial term.

 $\frac{1}{2} - \frac{3}{2} - \frac{1}{2}  

## Residue method:

 $x(n) = \frac{1}{2\pi i} \oint x(z) z^{n-1} dz =$  \tesidues \, \text{ residues } \, \, \text{ x(z)} \, \, \text{ of poles} \\ \text{ within } \, \text{ c.}

cauchy residue theorem:

Let f(z) be a fundion of the complex variable z and c be a closed path in the z-plane of the derivative  $\frac{d}{dz}f(z)$  exists on and inside the c and if f(z) has no poles at  $z=z_0$ , then

 $\frac{1}{\alpha\pi i} \oint_{C} \frac{f(z)}{z-z_0} dz = f(z)\Big|_{z=z_0}$   $= f(z_0)$ 

If the (k+1) to order derivative of fcz) exists and fcz) has no poler at z=zo, then

 $\frac{1}{\sqrt{x}} \int_{z}^{z} \frac{f(z)}{(z-z_0)^{k}} dz = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} f(z) \Big|_{z=z_0}$ 

On By using residue method, find the inverse z-handourn of  $x(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{2}}$ , Roc: |z|>2

$$x(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}} = \frac{z(z+3)}{z^{2}+3z+2} = \frac{z(z+3)}{(z+1)(z+2)}$$

 $\alpha(n)=$   $\leq residue q \times (z) z^{n-1}$  as pole within C.  $= \leq residue q \frac{z(z+3)}{(z+1)(z+2)} z^{n-1}$  as pole, within C.

=  $\leq$  residuu  $\neq$   $\frac{(z+3)z^n}{(z+1)(z+2)}$  as pole z=-1 and z=-2 within c.

= residue of  $(z+3)z^n$  of pole z=-1+ residue of  $(z+3)z^n$  of pole z=-2 (z+1)(z+2)

$$= \frac{(z+z)(z+3)z^{2}}{(z+z)(z+3)} + \frac{(z+z)(z+3)z^{2}}{(z+z)(z+z)} |_{z=-2}$$

$$= \frac{(z+3)z^{2}}{(z+z)}|_{z=-1} + \frac{(z+3)z^{2}}{(z+z)}|_{z=-2}$$

$$= \frac{(z+3)z^{2}}{(z+z)}|_{z=-1} + \frac{(z+3)z^{2}}{(z+z)}|_{z=-2}$$

$$= \frac{(z+3)z^{2}}{(z+z)}|_{z=-1} + \frac{(z+3)z^{2}}{(z+z)}|_{z=-2}$$

$$= \frac{(z+3)z^{2}}{(z+z)}|_{z=-1} + \frac{(z+3)z^{2}}{(z+z)}|_{z=-2}$$

$$= \frac{(z+3)z^{2}}{(z+z)}|_{z=-2} + \frac{(z+z)^{2}}{(z+z)}|_{z=-2}$$

$$= \frac{(z+z)(z+3)z^{2}}{(z-z)(z-3)}|_{z=-2} + \frac{(z+z)(z+3)z^{2}}{(z-z)(z-3)}|_{z=-2}$$

$$= \frac{(z+z)(z+z)z^{2}}{(z+z)(z-3)}|_{z=-2} + \frac{(z+z)(z+z)z^{2}}{(z-z)(z-3)}|_{z=-2}$$

$$= \frac{(z+z)(z+z)z^{2}}{(z-z)(z-3)}|_{z=-1} + \frac{(z+z)(z+z)z^{2}}{(z-z)(z-3)}|_{z=-3}$$

= - 4 + 2.30

= [2.8] - 1 Juin.

(90). Find 
$$x(n)$$
 if  $x(z) = \frac{e^{z^{-1}}}{(1-\frac{1}{4}z^{1})^{2}}$ ;  $x(z) = \frac{e^{z^{-1}}}{4}$  and  $x(z) = \frac{e^{z^{-1}}}{2}$  an

Gen. Dekimini the inverse z-transform of  $x(z) = \frac{z^{-1}}{(1-az^{-1})(1-3z^{-1})}$  $x(z) = \frac{az}{(z-a)(z-3)}$ Roc: a < |z| < 3

hum the ROC, we can see that acm is a two sided seq.

might sided > acm)

 $2(n) = -\frac{1}{2} = 2$  residues of  $x(z) z^{n-1}$  at poli z = 3. Left nided  $\Rightarrow u(-n-1)$   $+ \geq residue$  of  $x(z) z^{n-1}$  at poli z = 3. In all polices.

= - residue of  $\frac{z^{n}}{(z-2)(z-3)}$  and pole  $z=3+veridue of <math>\frac{z^{n}}{(z-2)(z-3)}$  and  $\frac{z^{n}}{(z-2)(z-3)}$ 

$$= -\frac{(z_{1}3)}{(z_{1}3)} \frac{z^{n}}{(z_{2}3)} + \frac{(z_{1}3)}{(z_{2}3)} \frac{z^{n}}{(z_{2}3)} = 2.$$

$$= -\frac{3}{1} + \frac{2}{-1}$$

$$\text{light rided} \qquad \text{sight rided}.$$

Convolution method:

Convolution property:  $x(n) = x_1(n) + x_2(n) \stackrel{Z}{=} x(z) = x_1(z) x_2(z)$ from the property, we know that the convolution of x(n) and  $x_2(n)$  is the inverse z-transport of x(z).
Thus x(n) can be obtained by convolution  $x_1(n)$  of  $x_2(n)$ .

On. Find the inverse z-transport of  $x(z) = \frac{1+3z^{-1}}{1+3z^{-1}+9z^{-2}}$ Roc: |z| > 2 using convolution method.

$$X(z) = \frac{1+3z'}{1+3z'+4z^2} = \frac{Z(2+3)}{Z^2+32+2}.$$

$$X(z) = \frac{Z}{(2+1)} \frac{z+3}{(z+2)}$$

$$Let \ X(z) : X_1(z) \cdot X_2(z).$$

$$Let \ X(z) : X_1(z) \cdot X_2(z).$$

$$Let \ X(z) : X_1(z) \cdot X_2(z).$$

$$Let \ X_1(z) : Z = \frac{Z}{(2+1)} \Rightarrow X(n) = (-1)^n u(n).$$

$$and \ X_2(z) : \frac{Z+3}{2+2} = \frac{Z}{2+2} + \frac{Z}{2+2} \frac{3Z}{2+2}.$$

$$a_2(n) = (-2)^n u(n) + 3 \cdot (-2)^{n-1} u(n-1).$$

$$a(n) = x_1(n) + x_2(n)$$

$$= (-1)^n u(n) + (-2)^n u(n) + 3 \cdot (-2)^{n-1} u(n-1).$$

$$= (-1)^n u(n) + (-2)^n u(n) + 3 \cdot (-2)^{n-1} u(n-1).$$

$$= (-1)^n u(n) + (-2)^n u(n) + 3 \cdot (-2)^{n-1} u(n-1).$$

$$= (-1)^n u(n) + (-2)^n u(n-1).$$

$$= (-2)^n (1-0.5.0.5) = (-2)^n (2-0.5)$$

$$= (-2)^n (1-0.5.0.5) = (-2)^n (2-0.5)$$

$$= (-2)^n (1-0.5.0.5) = (-2)^n (2-0.5)$$

$$= (-3)^{n-1} (-1)^n u(n-1) = 3 \cdot (-3)^{n-1} (-1)^n u(n-1-k).$$

$$= (-3)^n (-0.5)^n = (-3)^{n-1} (-2)^n = (-3)^{n-1} (-3)^n (-3)^n.$$

$$= (-3)^n (-0.5)^n = (-3)^{n-1} (-3)^n (-3)^n.$$

$$= (-3)^n (-3)^n (-3)^n (-3$$

$$= -(-3)_{0} + 3(-1)_{0}, = [3(-1)_{0} - (-3)_{0}] \cdot \pi(u),$$

$$\pi(u) = 3(-3)_{0} - (-1)_{0} + -3(-3)_{0} + 3(-1)_{0},$$

$$= -3(-3)_{0} + 3(-1)_{0},$$

On. Find the inverse Z-transform of  $\chi(z) = \frac{z^2}{(z-2)(z-4)}$ wing constitution method.

$$\chi(z) = \frac{Z}{(Z-2)} \cdot \frac{Z}{(Z-4)} = \chi_1(z) \cdot \chi_2(z).$$

$$X_1(z) = \frac{z}{z-2} \implies x_1(z) = a^2 u(z)$$

$$\chi_{\lambda}(z) = \frac{1}{z-\lambda} \implies \chi_{\lambda}(z) = 4^{n} u(z)$$

$$\chi_{\lambda}(z) = \frac{1}{z-\lambda} \implies \chi_{\lambda}(z) = 4^{n} u(z)$$

$$x(n) = x(n) + a_2(n) = \sum_{k=-\infty}^{\infty} x(k) x_2(n-k).$$

$$= \sum_{K^2-\infty}^{\infty} 2^K u(\kappa) A^{n-K} u(n-\kappa)$$

$$= \frac{2}{K_{2}-8} \underbrace{2^{K} (K)}_{K_{2}-8} + \underbrace{2$$

$$= 4^{n} \left[ \frac{2}{100} \left( \frac{0.5^{n}}{0.5}, 0.5 \right) \right] = 4^{n} \left[ 2 - 0.5^{n} \right]$$

$$= 4^{n} \left( \frac{1 - 0.5^{n}}{0.5}, 0.5 \right) = 4^{n} \left[ 2 - 0.5^{n} \right]$$

$$= 4^{\circ} \left( \frac{1 - 0.5 \cdot 0.5}{0.5} \right)^{-2}$$

an-find the inverse z-hanspron of x(z): Z (z-1/2). cuing convolution property. Also verify the answer using partial hadron and evidue method. By wwwolnter  $X(Z) = \frac{Z}{Z-1}, \frac{1}{Z-1} = X_1(Z), X_2(Z).$  $\chi_1(z) = \frac{z}{z-1} \Rightarrow x_1(n) = u(n)$  $X_2(z) = \frac{1}{z - y_0} = z^{-1} \frac{z}{z - y_0} \Rightarrow x_2(n) = (x_0)^{n-1} u(n-1),$ x(n):  $x(n) \notin x(n)$ :  $\sum_{k=-\infty}^{\infty} x(k) x(n-k)$ =  $\sum_{k=-\infty}^{\infty} u(k) \left( \frac{1}{2} \right)^{n-1-k} u(n-1-k).$  $= \sum_{\chi=0}^{n-1} (\sqrt{2})^{n-1-1/2} = \sum_{\chi=0}^{n-1} (\sqrt{2})^{n-1} (\sqrt{2})^{n-1/2}$  $= \left( \frac{1-2}{2} \right)^{-1} \left[ \frac{1-2}{1-2} \right]$  $= (1/2)^{n-1} \left[ 2^{n} - 1 \right] = 2^{n} (1/2)^{n-1} (1/2)^{n-1}$ partial traction method:  $\frac{X(z)}{z} = \frac{1}{(z-1)(z-1/2)} = \frac{1}{(z-1)^2} = \frac{1}{(z-1)^2}$ 1= A(Z-1/2)+B(Z-1), PU Z=1 => 1/2A=1=> A=2. Puz=1/2 => -1/2 B=1 => B=-21 X(Z)2 2 = +- 2 = 1/2 Taking inv,  $x c n = 2 u c n - 2 (1/2)^2 u c n = 0 [2-2(1/2)^2] u c n)$ By evidue method: xcn2 Erendun of 7 zola pola within (2-1)(z-1/2) =  $\leq revidue of \frac{z^n}{(z-1)(z-1/z)}$  or poles z=1 of  $z=\frac{1}{2}$  within c, =  $\frac{1}{(z-1)(z-1/2)} = \frac{1}{(z-1)(z-1/2)} = \frac{1}{$ 

Scanned by CamScanner

## Analysis of LTI Systems:

The z-transform plays an important role in the analysis and design of discrete time LTI 8ystems.

hystern function (transfer function) and impulse eesponse;

Consider a discrete time LTI system having an impulse esponse hum as shown in 109 given below.

x(n)  $\Rightarrow y(n)$ .

Let us say it gives an output yenr for an input xcn. Then we have ycn = xcn + hcn. Taking z - hansform on both sides.

Y(Z) = X(Z). H(Z)

H(Z) = Y(Z) X(Z)

H(Z) is called the system percention or the transfer percention of the LTI discrete time of me and is defined as the ratio of the z-transform of the of sequence years to the z-transform of the years sequence seems when the initial conditions are reglected.

The poles of the system are depined as the value of z for which the system punction HCZ) = 00 and the zeros of the system are the value of z for which the system punction HCZ) = 0.

Relationship between transportation and difference equalion

consider an  $n^{th}$  order LTI DT 8/m described by the difference eq.  $\sum_{K \geq 0} a_K y(n-K) = \sum_{K = 0}^{M} b_K x(n-K)$ .

Taking z-mans form on both side.

 $\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$  $y(z) \underset{K_2 0}{\overset{N}{\geq}} a_K z^K = x(z) \underset{K_2 0}{\overset{M}{\geq}} b_K z^K$  $\frac{Y(z)}{H(z)} = \frac{\sum_{K>0}^{M} b_K z^K}{\sum_{K>0}^{M} a_K z^K} = \frac{b_0 + b_1 z^1 + \cdots b_M z^m}{a_0 + a_1 z^1 + \cdots a_N z^N}$ when <u>Y(z)</u> is = H(z) is called the system function or hansy hundion of the System. The pravery lespone of a system is obtained by substituting Z= e in H(Z). etability and causality: The newsay and syficient condition for a consod linear. hmu involuant system to be BIBO stable it: ~ Zalhcn) / < ∞ If the system is causal, henriso for nico. For a causal LTI 2 Incm) L 00 8/m the condition: n=0 Ryskern punction, H(Z) = 2 hcm Z<sup>n</sup>. for stability i of a causal LTI s/m magnihide |z| = |z| h(n) |z| = |z| h(n) |z|The evaluation of M(2) on unit circle yields. [H(2)] = ≥ [h(n)] < ∞ (: |Z|=1 fox unit circle) Therefore for a stable system, the ROC of a system function includes can't circle. For a causal system, the ROC is exterior of the circle of radius 'r'. Bose Roc countris contain cuty pole of HLZ); or camal LTI 8yskm is BIBO Stouble

ter a stable 8/m, the Recognition include the unit arche.

that the

If and only if all the poles of H(Z) are inside the civil circle.







Problems on System function

1) Find the s/m hundron of the  $1^{sl}$  order difference equalization y(n) - a y(n-1) = x(n) + x(n-1)

Taking z- transform on both sidu.

System hundrion 
$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{1+Z^{-1}}{1-Q}$$

a) Given xcn = ucn) and ycn = 2 ucn. Find the agreem function and impulse susponse.

$$X(Z) = \frac{Z}{Z-1}$$
 and  $Y(Z) = \frac{1}{Z-2}$ 

Ryskm function 
$$H(z) = \frac{y(z)}{x(z)} = \frac{zl}{z-2} \times \frac{z-1}{z}$$

Impulk euponse, him:

$$\frac{H(Z)}{Z} = \frac{Z-1}{Z(Z-2)} = \frac{A}{Z} + \frac{B}{Z-2} \implies Z-1 = A(Z-2) + BZ.$$

$$\rho \omega z = 0 \Rightarrow -1 = -2A \Rightarrow A = 1/2$$
,  $\rho \omega z = 2 \Rightarrow 1 = 2B$ 

$$\frac{H(z)}{Z} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{Z-2}$$

$$\frac{1}{2} + \frac{1}{2} \frac{1}{Z-2}$$

$$\frac{1}{2} + \frac{1}{2} \frac$$

A) The i/p to the system 
$$x(n) = u(-n-1) + \frac{(1-1)^n}{2}u(n)$$
. The  $z$ - hamform of the 8/m old in  $y(z) = \frac{-\frac{1}{2}z^2}{(1-\frac{1}{2}z^2)(1+z^2)}$ . Determing the impulse supone and  $o/p$  of the system.

$$\chi(z) = \frac{1/2 z}{(1-z)(z-\frac{1}{2})}$$
,  $\gamma(z) = \frac{-1/2 z^{-1}}{(1-\frac{1}{2}z^{-1})(1+z^{-1})} = \frac{-1/2 z}{(z-\frac{1}{2})(z+1)}$ .

$$H(z) = \frac{Y(z)}{X(z)} = \frac{-\frac{1}{2}z}{(z-\frac{1}{2})(z+1)} \times \frac{(1-z)(z-\frac{1}{2})}{\frac{1}{2}z} = \frac{-(1-z)}{z+1} = \frac{z-1}{z+1}$$

impulk suponu hon):

$$\frac{H(Z)}{Z} = \frac{Z-1}{Z(Z+1)} = \frac{A}{Z} + \frac{A}{Z+1}$$

$$\Rightarrow$$
 Z-1 = A(Z+1)+BZ  
PW Z=0  $\Rightarrow$  -1 = A ; PW Z=-1  $\Rightarrow$  -2 = -B  $\Rightarrow$  B=2,

$$\frac{H(z)}{z} = -\frac{1}{z} + 2\frac{1}{z+1}$$

Taking inv. Z - hansform, impulse su ponse, h(n) = -e(n)+2(-1)un

of of the system year;

$$\frac{Y(2)}{Z} = \frac{-\frac{1}{2}}{(2-\frac{1}{2})(2+1)} = \frac{A}{(2-\frac{1}{2})} + \frac{B}{2+1}$$

$$A = -\frac{1}{3}$$
 and  $B = \frac{1}{3}$ .

Taking inverse 2-hangorm,

Find the difference eqn and the prequency surponse of the system.

$$\text{(Niven H(Z) = } \frac{Z+2}{2Z^2-3Z+4}$$

$$H(2) = \frac{Y(Z)}{X(Z)} = \frac{Z+2}{2Z^2-3Z+4} = \frac{Z^2(Z^1+2Z^2)}{Z^2(2-3Z^1+4Z^2)}$$

$$Y(z)(Q-3z^{1}+4z^{2}) = X(z)(z^{-1}+Qz^{2}).$$

Taking inverse z-maniform.

$$ay(n) - 3y(n-1) + 4y(n-2) = x(n-1) + ax(n-2)$$
.

which is the enquired difference egn.

Putting  $z = e^{i\Omega}$  in H(z), we get the trajuency lesponse  $H(e^{i\Omega})$  of the system.

$$H(Z) = \frac{Z+2}{2Z^2-8Z+4}$$

$$= \frac{2 + (8 \cos 2 + i \sin 2 \alpha}{4 + (8 \cos 2 \alpha - 3 \cos 2 \alpha) + i (8 \sin 2 \alpha - 3 \sin \alpha)}$$

"3h. plot the pole-zero pattern and determine which of the following systems are stable:

a) y(n)= y(n-1) -0.8 y(n-2) +x(n) +x(n-2)

b) y(n) = 2y(n-1) - 0.8 y(n-2) + x(n) + 0.8 x(n-1)

9(n) = 9(n-1)-0.8 9(n-2)+x(n)+x(n-2) a) riven

mujund-s prixat

Y(Z) = Z Y(Z) - 0-8 Z Y(Z) + X(Z) + Z X(Z)

Y(z) - Z'Y(z) +0.822Y(z) = X(z)+z2x(z)

 $Y(Z)\left[1-Z_1+0.8Z_2\right]=X(Z)\left[1+Z_2\right]$ 

Ryslem function,  $H(Z) = \frac{Y(Z)}{X(Z)} = \frac{1+Z^{-2}}{1-z^{-1}+0.8Z^{2}}$ 

 $= \frac{Z^2 + 1}{Z^2 - Z + 0.8} = \frac{(Z+i)(Z-j)}{(Z-0.5-j0.74)(Z-0.5+j0.74)}$ 

zeros of HCZ): Z=1j and Z=-lj pale d HCZ): Z = 0.5+j0.74 and Z= 0.5-j0.74

pole-zero Polq



au inside the unit circle thou  $\rho$ o $\mu$ NB System is stable. M

b) viven 
$$y(n) = ay(n-1) - 0.8 y(n-2) + x(n) + 0.8x(n-1) + 1/(z) = 2z^{1}/(z) - 0.8 z^{2}/(z) + x(z) + 0.8z^{1}x(z)$$
  
 $y(z) - az^{1}/(z) + 0.8z^{2}/(z) = x(z) + 0.8z^{1}x(z)$   
 $y(z) [1 - 2z^{1} + 0.8z^{2}] = x(z) [1 + 0.8z^{1}]$ 

Ryslem hundron, 
$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{1 + 0.8 Z^{-1}}{1 - 2 Z^{-1} + 0.8 Z^{-2}}$$

$$H(Z) = \frac{Z^2 + 0.8Z}{Z^2 + 2Z + 0.8} = \frac{Z(Z + 0.8)}{(Z - 1.44)(Z - 0.55)}$$

Zerios of M(Z): Z=0 and Z=-0.8

pole of H(Z): Z=1.44 and Z=0.55

pole-zero plo1:



One pole is our rich the unit circle

.: the s/m is unstable.

an. Consider a course discrete home LTIS/m with input  $(3)^n u(n) - 2(3)^n u(n) - 2(3)^n u(n-1)$ . and output  $y(n) = (3)^n u(n)$ . Determine the house function (H(Z)), impulse exponse bundless of the system.

unen 
$$\chi(n) = \frac{(3)^{n}u(n) - 2(1/3)^{n-1}u(n-1)}{\frac{Z}{Z-1/3}}$$
  $2z^{-1}\frac{Z}{z-1/3}$ .

$$X(Z) = \frac{Z}{2 - \frac{1}{3}} \frac{1}{2 - \frac{1}{3}} = \frac{Z^{-2}}{2 - \frac{1}{3}}.$$

Where  $y(x) = (\frac{1}{2})^n u(x)$   $\frac{Z}{2 - \frac{1}{2}}$ .

System function,  $H(Z) = \frac{V(Z)}{x(Z)} = \frac{Z}{Z - \frac{1}{2}} \frac{x^{-2}}{2 - \frac{1}{2}}.$ 

$$H(Z) = \frac{Z(Z - 2)}{(Z - \frac{1}{3})}.$$

$$\frac{H(Z)}{Z} = \frac{Z - 2}{(Z - \frac{1}{3})}.$$

$$\frac{H(Z)}{Z} = \frac{Z^{-2}}{(Z - \frac{1}{3})} + \frac{B}{(Z - \frac{1}{3})}.$$

$$\frac{H(Z)}{Z} = \frac{Z^{-2}}{(Z - \frac{1}{3})} + \frac{B}{(Z - \frac{1}{3})}.$$

$$\frac{Z^{-2}}{Z} = \frac{A}{(Z - \frac{1}{3})} + \frac{B}{(Z - \frac{1}{3})}.$$

$$\frac{X^{-2}}{Z} = \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{1}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{1}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{1}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{1}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{1}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{1}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2}.$$

$$\frac{H(Z)}{Z} = -\frac{A}{2} $$

$$\frac{H(Z)}{$$

gh causal system given below and step lesponse.

He on stability. y(n)-y(n-1)-2y(n-2)=x(n-1)+2x(n-2)

(viven  $y(n) - y(n-1) - \partial y(n-2) = x(n-1) + \partial x(n-2)$   $y(z) - z^{-1}y(z) = \partial z^{-2}y(z) = z^{-1}x(z) + \partial z^{-2}x(z)$  $y(z) \left[1-z^{-1} \partial z^{-2}\right] = x(z) \left[z^{-1} + \partial z^{-2}\right].$ 

Ryslem hun.,  $H(Z) = \frac{Y(Z)}{X(Z)} = \frac{Z^{1} + 2Z^{2}}{1 - Z^{1} - 2Z^{2}}$ 

 $H(z) = \frac{Z+2}{z^2 z - \lambda} = \frac{Z+2}{(z-2)(Z+1)}$ 

Impulse Response, h(n):  $\frac{H(z)}{z} = \frac{z+2}{z(z-2)(z+1)} = \frac{A}{z} + \frac{B}{(z-2)} + \frac{C}{(z-2)}$ 

Z+2= A(Z-2)(Z+1)+BZ(Z+1)+CZ(Z-2).

PW 2=0 => 2 = A(-2)(1) => 2=-2A => A=-1

Pul 2=2 => 4=6B => B=4/6= 2/3.

PW 2=-1 => 1=3 C => C= 1/3

1:  $\frac{H(2)}{Z} = -\frac{1}{Z} + \frac{2}{3} \frac{1}{Z-2} + \frac{1}{3} \frac{1}{Z+1}$ 

Taking inverse

For step supone ,  $x(z) = \frac{z}{z-1}$ 

ownu ,  $Y(z) = H(z) \cdot X(z) = \frac{Z+2}{(z-2)(Z+1)} \cdot \frac{Z}{(z-1)}$ 

 $\frac{Y(z)}{z} = \frac{Z+2}{(z-2)(z+1)(z-1)} = \frac{A}{Z-2} + \frac{B}{z+1} + \frac{C}{z-1} \qquad A = \frac{4}{3}$   $B = \frac{1}{3}$ 

: y(n)= 4/3 2 u(n) + 6-1) u(n) - 3/2 u(n) // (2-3/2

# unstable.

Determining the bequery exponse from poles of zeros!

8kp(1) hom the pole-zeros, while the system function 8kp(2) Find H(Z)/Z=ein; we go H(e<sup>2</sup>n), if the heavency supports.

On. Determine the pravency exposer from the hollowing pole-zero plat.



Zeros : Z = -1.3 and Z = 0.5

polu: Z= jo.6 and Z=-jo.6.

$$H(Z) = \frac{(Z+1.3)(Z-0.5)}{(Z-j0.6)(Z+j0.6)}$$

frameny supone: 
$$H(e^{j\Omega}) = (e^{j\Omega} + 1.3)(e^{j\Omega} - 0.5)$$

$$(e^{j\Omega} + j0.6)(e^{j\Omega} + j0.6)$$

On. The zeros of HCZ) on Z=0 and Z=-0.8 and

the pole of HCZ) are Z=1.4 and Z=0.5. Determine

the frequency exponse of the s/m.

$$f(Z)_2 = \frac{Z(Z+0.8)}{(Z-1.4)(Z-0.5)}$$
  
hea.  $lusp_1 + I(e^{l\Omega}) = \frac{e^{l\Omega}(e^{l\Omega}+0.8)}{(e^{l\Omega}-0.5)}$ 

Solution of LTI Systems described by the difference ego:

$$y(n-1) \stackrel{z}{\rightleftharpoons} z^{2}y(z) + y(-1)$$

$$y(n-2) \stackrel{z}{\rightleftharpoons} z^{2}y(z) + z^{2}y(-1) + y(-2)$$
Shifting
$$y(n-2) \stackrel{z}{\rightleftharpoons} z^{2}y(z) + z^{2}y(-1) + y(-2)$$

year? -> initial conditions.

Skeps: 1) for a given set of initial conditions, take the z-namporm of both sides of the diff. ean. be obtain the algebraic ean. in y(z).

- a) solve the algebraic ean for y(z)
- 3) Take the inverse z-hanspam.

Determine the 8kp exponer of the 8/5km  $y(n) - \chi y(n-1) = x(n) - \chi x(n-1)$ . Assume the initial conditions conditions

$$A(-1) = 1$$

$$A(-1) = 1$$

$$A(-1) = 1$$

FOR SKP SUI PONK  $\alpha$ cn)  $\alpha$  ucn) X(公) = 弄

Taking z- haryfum.

$$y(z) = \frac{1}{2}z' y(z) + y(-1) = x(z) - \frac{1}{2}z' x(z) + x(-0)$$

$$Y(z) = \frac{1}{2} \left[ \frac{1}{2} + \frac{1}{2} z^{-1} \right] \times (z).$$

$$Y(z) \left[ \frac{1}{2} - \frac{1}{2} z^{-1} \right] \times (z).$$

$$Y(z) = \frac{1}{2} + \left[1 - \frac{1}{2}z^{-1}\right] \frac{z}{z^{-1}}$$

Taking inverse 2- han form

On bekinning the euponer of the s/m given by the difference egn. yin1 - 0.5 yin-1) = xin), when the input is xin) = 5 als and the initial condition is yen = 2.

Civen 
$$x(n) = 5^n u(n) \implies x(z) = \frac{4}{z-5}$$

$$y(m) = 0.5 y(m-1) = x(m)$$
.

Taking z. harspim.

$$Y(z) - 0.5 \left[ z' Y(z) + y(0) \right] = X(Z).$$

$$Y(Z) - 0.5[Z'Y(Z) + 2] = X(Z)$$

$$Y(Z) - 0.5Z^{-1}Y(Z) - 1 = X(Z).$$

$$Y(Z)[1-0.5Z^{1}]+1=X(Z)$$

$$Y(z) = \frac{z}{1-0.5z'} + \frac{1}{1-0.5z'}$$

$$= \frac{Z}{(Z-5)(1-0.5z^{2})} + \frac{1}{1-0.5z^{2}}$$

$$= \frac{z^{2}}{(z-5)(z-0.5)} + \frac{z}{z-0.5}$$

$$\frac{z}{(z-5)(z-0.5)} + \frac{z}{(z-0.5)} $

to pad

To hind 
$$y_{1}(D)$$
;  
 $\frac{y_{1}(z)}{z} = \frac{z}{(z-0.5)}(z-0.5)^{2} = \frac{A}{(z-0.5)} + \frac{B}{(z-0.5)}$ .

$$Y_{1}(z) = \frac{10}{9} (z-5) + \frac{1}{9} (z-0.5)$$

$$y_{1}(z) = \frac{10}{9} \frac{z}{z-5} - \frac{1}{9} \frac{z}{z-0.5}$$
  
Taking inv. z. mansform  
 $y_{1}(z) = \frac{10}{9} \frac{z}{z-5} - \frac{1}{9} \frac{z}{z-0.5}$  (0.5) (u.a.)

$$4(u) = 1/4 2 u(u) + 8/4 0.2 u(u)$$

$$4(u) = 1/4 2 u(u) + 8/4 0.2 u(u)$$

$$4(u) = 1/4 2 u(u) + 8/4 0.2 u(u)$$

zero input and zero state suponse:

The expose due to the initial conditions. alors (in the absence of yo, ren)=0) is called 2010. in usponse. The euronic due to the in alone Consuming that all the initial conditions are zero ) is called zero 8tab suponk

Total suponse = zero i/p suponse + zero stati su ponse.

A(u) + 2A(u-1) + eA(u-5) = x(u-1) + 5x(u)xcn= ucn). The initial conditions are y(-1)=1, y(-2)=0 a) zero i/p esponke

b) Zew State Response

c) total eliponie

y(n) + 5 y(n-1) + 6y(n-2) = x(n-1) + 2x(n)**(20)** Y(z) +5[z'\(z)+y(r)]+6[z²(z)+z'y(r)+y(r2)] Taking 2 mansprom.

 $= \left[ z' \times (z) + \chi(-1) \right] + Q \times (z).$ 

as zero isp impone:

Y(Z) + 5 [z] Y(Z) + y(-1)] + 6 [z2 Y(Z) + z y(-1) + y(-2)] = 0

Y(Z) + 52 Y(Z) + 5 + 62 Y(Z) +62 = 0.

Y(Z)[1+5z]+6z2]+5+6z]=0,

1(2) [1+52]+62] = -5-62]

 $\frac{Y(z) = -5 - z'}{1 + 5z' + 6z^{-2}} = \frac{z(-5z + 6)}{z^{2} + 5z + 6} = \frac{z(-5z - 6)}{(z + 2)(z + 3)}$ 

 $\frac{Y(z)}{z} = \frac{-5z-6}{(z+2)(z+3)} = \frac{A}{z+2} + \frac{B}{z+3}.$ Regio 2 = 0 A = 4 , B = 9.

 $1: \frac{y(z)}{z} = 4 \frac{1}{2+2} - 9 \frac{1}{2+3}$ 

Taking invelve y(n)= 4 (-2) u(n) -9 (-8) u(n)

Y(z)+5 [z'\(z)+0]+6[z'\(z)+0+0]= 
$$z'$$
\(z)+2\(z).

$$V(2) + 5 = V(2) + 6 = V(2) = V(2) + 2 \times (2)$$

$$Y(z) + 5z'Y(z) + 6z'' = xd(z) [z'' + 2] x(z)$$
  
 $Y(z) [1+5z' + 6z''] = xd(z) [z'' + 2] x(z)$ 

$$Y(z) = \frac{[z^2+2]}{[1+5z^2+6z^2]} \cdot \frac{z}{z-1}$$

$$= \frac{Z(1 + 2Z)}{(z+2)(z+3)} \cdot \frac{Z}{(z-1)}$$

$$\frac{Y(2)}{z} = \frac{z(12+2z)}{(z+2)(z+3)(z-1)} = \frac{A}{z+2} + \frac{B}{z+3} + \frac{C}{z-1}$$

$$A = -2$$
 ,  $B = \frac{15}{4}$  ,  $C = \frac{1}{4}$ 

$$\frac{1}{2} = -2 \frac{1}{2+2} + \frac{15}{4} = \frac{1}{2+3} + \frac{1}{4} = \frac{1}{2-1}$$

Total surporme = zero i/p lu pone + zero stati surporm

$$= 4 (-2)^{3} u(n) - 9 (-3)^{3} u(n) - 2 (-2)^{3} u(n) + \frac{15}{4} (-3)^{3} u(n) + 4 u(n)$$

$$= & (-2)u(n) - & (-3)u(n) + & u(n)$$

15-36.21

|          | classmate  Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | *(16.66 <u>III</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | Fourier Representation for periodic discrete time signal.  -> Discrete time Fourier servies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| · ·      | Definition of DTFS:  DTPS representation of a periodic sequence xcn)  is given by  xcn) = \( \times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | The inverse DTFS is $ \frac{1}{N} = \frac{1}{N} = \frac{1}{N} \times $ |
|          | N > Fundamental period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u> </u> | $k_1 n \in -(N_2-1)$ to $N_2 \rightarrow U$ $N$ is even. $k_1 n \in -(N_2-1)$ to $N_2 \rightarrow U$ $N$ is odd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ,        | In the above egns. O and Q XCK) are known or DTFS coefficients. Egn. O is known as Synthesis egn and Q is known as Analysis egn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -        | Steps to find focusier oxphicients x(k):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | from the function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 1) Find the value of the and so N<br>2) . Express the given function in exponential form.<br>3) Express the above fun. In Jerms of 2, part 14 as egg (1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 11     | a construction of the cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|    | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 80) श्रम्भू व्यवस्था विकास br>विकास विकास                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | a) Write the Synthests eqn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | DCCW) 5 XCK) GKDV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | 5) Seled the range of 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | KE-NS-1) PE NSO > H N N ORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12 | c) Expand the synthesis eqn by putting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -  | anethician x(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | From the Back!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | 2) Select the range of F)  2) Write the analysis eqn: $\chi(x) = \frac{1}{N} \lesssim \chi(x) \approx \frac{1}{N} \lesssim \chi(x) \approx \frac{1}{N} \approx $ |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

classmate

| <b>⊗</b> Ω.  | Retermine the DIFS coefficients of across 8 cos (T/2 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·            | Slep (1): Find the value of and N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •            | $\Omega = \pi/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{4}} = \frac{1}{\sqrt{6}} = 1$ |
|              | 8tep 60: Express the given pur in kross of exponential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>-</b>     | 2(1) = 3.1 [e + e ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | = 3 e + 3 e JT/8n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 8 tep (3): Express the above fun. in terms of a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -            | $x(u) = \frac{3}{3} e_{jv} \frac{3}{2} e_{j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ÷            | Step (+): Write the Synthesis egn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4            | zen = E xex eikan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ~            | Step (5): Select the Sange of k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ·            | KE-CM2-1) PO NO (H N in even)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <del>.</del> | KE-(1/2-1) bo 16/2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <del></del>  | KE-7 bo 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | Skp (6): Expand the Synthesis ean, by putting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|          | Date Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | $x(u) = \begin{cases} x(x) \in \\ 8 \end{cases}  (x \in u).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -        | - X(-1) e + X(-1) e + X(0) e + X(8) e 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - 3CCD   | +X (2) 6 + X(-1) 6 + X(1) 6 + |
| 15       | Companing D and D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | x(-D= 3/2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| H        | $\int_{0}^{\infty} -4 \leq k \leq 8 \text{ and } k \neq \mp 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u> | Determine the DTPS Coefficients of 2000 = cos T/41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | 1) $\Omega = \overline{V}_4$<br>$N = 2\overline{V} = 2\overline{V} = 8$ (even).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | $2)  x(n) = \frac{2^{j} \pi y_4 n}{2} + \frac{-j \pi y_4 n}{2}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 3) $a(w) = \frac{5}{16}av + \frac{3}{16}cv$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| ÷.     | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | $4.  \alpha(x) = \sum_{K=\langle N \rangle} \chi(K) \in \mathcal{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 5 KE - (N-1) to N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | e - 1 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | $= \chi(-1) = + \chi(0) + \chi(1) = + \chi(2) = -\frac{1}{2} $ |
|        | 7. Comparing O and O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | $X(-1) = \frac{1}{2}$ $X(1) - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | /' X(K) - \ /2 K=±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| July 1 | (0 -1≤K≤2 and k≠±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| :      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|      | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gin. | Determine DTFS coefficients for the periodice &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3<br>-4-3-2-1012345678.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -    | 1) Find N and $\Omega$ .  5) $N=A$ $\Omega = 2\pi - 2\pi - \pi/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -    | 20 €0 € (À 603 apo a) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 600010to From the big. ne a to 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 3) Weite the analysis eqn. $X(K) = \frac{1}{N} \leq x(n) \in \mathbb{R}^{N}$ $N \in \mathbb{R}^{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | $\frac{4}{2} \frac{1}{2} \frac{3}{2} \frac{3}$ |
|      | $= \frac{\pi(3)}{4} = \frac{\pi(0) + \pi(1)}{2} = \frac{13}{13} = \frac{13}$                                                                                                                                                                                                                                                                                                                                                   |
|      | $= \frac{1}{4} \left[ 0 + 1 e^{-\frac{1}{2}kT/2} - \frac{12kT/2}{2} - \frac{13kT/2}{3} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|            |    | Date                                                                                                 |
|------------|----|------------------------------------------------------------------------------------------------------|
|            |    | Determine the DIRS seprescribation of the seques acros = cos2 (Typ). Also sheeth the magnifule spect |
|            |    | $x(n) = \cos^2(T_{4}n)$ .                                                                            |
|            |    | = 1+ (0s 2 T/4 n)                                                                                    |
|            |    | 2 1+ cost/20<br>2.                                                                                   |
|            |    | $N = 2\pi m - 2\pi m - 4 (m=1)$                                                                      |
|            |    | $2)  \alpha(n) = \frac{1}{2} + \frac{2\pi}{4} + \frac{-\pi}{4}$                                      |
| #=1====    |    | 3) $x(n)$ : $\frac{1}{2} + \frac{e^{j\Omega n}}{4} + \frac{e^{-j\Omega n}}{4}$                       |
| + + +      | .* | 4) $x(n) = \sum_{k=2} x(k) e^{jknn}$ .                                                               |
| <i>y y</i> | 5) | $KC = \frac{(N-1)}{\alpha}$                                                                          |
|            |    | (E -1 b 2.                                                                                           |
| «          |    |                                                                                                      |





|            | classmate . |
|------------|-------------|
| $\bigcirc$ | Date        |
| 6          | Page        |

|        | = 10 x(0) + x(1) e + x(2) e + x(3) = 120 kg          |
|--------|------------------------------------------------------|
|        | + x(4) e - 34.0k                                     |
|        |                                                      |
|        |                                                      |
|        | X(K)= 10 1+ X(1) = + X(2) = + X(3) = + X(4) = -140/4 |
|        | 2)                                                   |
|        | X(0)= \$ 0.5                                         |
|        | X(1) = 0.1= j 0.306                                  |
|        | X(2): 0                                              |
|        | X (3)= 0.1-j0.07                                     |
| ,      | X(4) · O                                             |
| ·<br>• | X(5): 0.1                                            |
| *      | X(6) = 0                                             |
|        | x(7) = 0.1 - j0.07                                   |
|        | X(8): 6                                              |
|        | $\chi(q) = 0.1 - j \cdot 0.307$                      |
| l      | •                                                    |

|        | classaute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Date Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| :Qn.   | Oriver DIFS coefficient X(K): {0,0,0,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | and $S_0 = \frac{2\pi}{7}$ . Find $x(n)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | S JKOD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | $xin = \sum x(x) e^{jk\Omega n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | = \(\frac{1}{2}\) \(\frac{1}{2 |
|        | K= 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | = x(-3) = +x(-2) = +x(-1) = +x(0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | $X(1) \in J_{20} + X(2) \in J_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No.    | = 86 # 7 # 56<br>-1822U - 1350U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | $= 3(e^{i2} 50) - \frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ;'<br> | =4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | = 4 COS (QT-2n) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | = 4 cos (4Th) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Al-m   | Sketch the magnified and phare specthum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|          | Classmate  Date Page 823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Properties of DTFS!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - 1)     | finarity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>%</b> | Thun $z(n) = ax(n) + by(n) \stackrel{\text{DTES}}{=} ax(k) + by(k)$ Thung: $z(k) = \frac{1}{N} \stackrel{\text{DTES}}{=} ax(k) + by(k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | $= \frac{1}{N} \sum_{n \geq N} \sum_{n$ |
|          | $= \frac{1}{N} \left[ \sum_{n=2N} a \times n = \frac{i \times n}{n^2 < N} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| G        | $= a + b + \sqrt{k u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -        | = a xtrx) + byck),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|    | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Time ship!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | Y xin) Lotes x(k).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -  | then z(n)= x(n-no) = 0783 z(K) = e x(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | Prod:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\frac{N}{200} \sum_{k=1}^{N} \frac{N}{2} \sum_{k=1}^{N} $                                                                                                                                                                                                                                                                                                                   |
| T  | $-\frac{N}{N} \lesssim \alpha (N - N_0) e^{-jk\Omega N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | By $w=v-v_0 \Rightarrow v=w+v_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | $\frac{1}{N} = \frac{1}{N} \leq x(m) = \frac{-J k \Omega(m+no)}{m \times N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | = 1 ≤ xcm) = jkrm -jkrmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ** | $\frac{1}{2} = \frac{1}{2} $ |
|    | XCK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | z e X(K).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| *  | Date Page 24                                                                                                                                                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. | Frequency 8hills                                                                                                                                                                             |
|    | Hen $z(n) = \frac{dx_{0}x_{1}n}{dx_{0}x_{1}n}$ .  Hen $z(n) = \frac{dx_{0}x_{1}n}{dx_{0}x_{1}n}$ . $z(k) = \frac{dx_{0}x_{1}n}{dx_{0}x_{1}n}$ . $z(k) = \frac{dx_{0}x_{1}n}{dx_{0}x_{1}n}$ . |
|    | $= \frac{1}{N} \leq \frac{1}{2(N)} = \frac{1}{2(N-K_0)} = \frac{1}{2N}$ $= \frac{1}{N} \leq \frac{1}{2(N-K_0)} = \frac{1}{2N}$                                                               |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |



|       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | classmate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Date Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | , age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | grametry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | y sens i real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 4 assis to xxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | then $\propto C-KD = \propto (N-KD = \chi^2(KD)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | , :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 84.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | sun can be weitten as sum of even foods companish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $\pi(U) = \pi^{-1}(U) + \pi^{0}(U)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | A acu) ales x(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,     | 1) 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | then secon pries Re Exchis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | SCOLUS (I I EXCK) }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | ie if sun i seal and even then its familes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | coefficients are real and whole it area it sent and old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H.    | then it townier coefficients are imaginary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | The state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| . 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | Orjugation-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | then 2000 = 2000 = X(K)= XX (-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | thin mark (n) DTPS ZLK)2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 200000 X (-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Brad. ZEKAD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | N n2KN>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +     | - JKIN, X(K) = X I(N) Z X NO Z X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | N = won!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | $\frac{N}{D = \langle N \rangle} = \frac{1}{\langle N \rangle} = \frac{1}{\langle N \rangle} = \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle} = \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle} = \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle} = \frac{1}{\langle N \rangle} \times \frac{1}{\langle N \rangle$ |
|       | xcn> = xux) = ik-2n. \ (h) = ki (h) = x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 2 CM 2 XUX) = 1 & XUM) e U (K) CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | - IN ON - IN USKNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -     | $x^{*}(x) = \sum_{k} x^{*}(x) \in J(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | K2DN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Die Sikon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Pul 1=-1 2 x (n) = \( \times \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 1 at con fores x (-K).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ll ll |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|          | <b>1</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9        | Paræval's theasen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -        | Taracous maxim;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | A awy coles xck)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -        | then average power, $P = \frac{1}{N} \leq  x(n) ^2 \leq  x(n) ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | Proof >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | $\frac{1}{b^{-1}} \leq \frac{1}{2} \frac{1}{$ |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -        | $\frac{1}{N} \approx \frac{\chi(n)}{N} \propto \frac{\chi(n)}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | M K 7 200 S VIVI SIKAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | M. K. T SCID = S XIK) EUKDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | X= <nd =="" x+ck)="X+CK),&lt;/th"></nd>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>.</u> | 1, b- 1 ≥ x(v) × (x) ≤ x, (x) €-1 K v v,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | Charging the order of Summalions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | P> ₹ x(x) 1 € x(x) € x(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | K2(N> N U5(N>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| * 14     | . XCK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | N 2 1 1 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 6> \(\int X(K) \times (K) \times (K) \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | where lxcx) 2 is the distribution of power as 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | spectral density spectrum of x(v).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u> </u> | Resource dimining of source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | A plot of brewig Vs K is called power Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                                        | Classmate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Date Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Sketch the oragnitude, phose and power specha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | $4 x(y) = \cos(\frac{13}{61} + \frac{1}{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ······································ | 1) 0 = ST<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | N- 21 m- 21 m- 13 (m=3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| :                                      | 13 N 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | 8) acus = G(ELU+L) + C13(PLU+L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 2 - Jeyn - Jy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | 3) x(n)= e = + e = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | 2 2 2 2 3 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 七                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | 4) x(n)= \( \times \tim |
|                                        | 5) ke - (N-1) b (N-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | e - 6 to 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | 6) x(x) = \(\frac{\kappa}{\kappa}\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| _              | <b>50</b> ) |                          | J <b>∉</b> ΩΩ       |                | 300           | حادد          |
|----------------|-------------|--------------------------|---------------------|----------------|---------------|---------------|
|                | x(0)        | = X(-6) e                | +-,                 | x(-3) e        | +x(-a)        | د (اهاء)<br>ا |
|                |             | + x(-1)e-J               | + χ(D).<br>τυ       | + X(1) C + X   | (2) e +>      | (3) 2         |
| -              |             | + XC4) e <sup>14</sup>   | <del>اس</del> ت ل + | - x (e) = 16.0 | n > 2         |               |
|                | 7) 60       | mparing (                | band                | <u></u>        |               |               |
|                | deny).      |                          | TT/6                | ,              |               |               |
| pro-1 - 12 - 1 | , ×         | (C-3)= = Q               |                     |                |               |               |
|                |             |                          |                     |                |               |               |
|                | ,           | (C3) = e <sup>j TM</sup> |                     |                |               |               |
|                |             | ; X(K)= {                | با ونااله           | K = -3.        |               |               |
| 4              |             | ; x(K)= }                | 1 = 1 T/6           | K = 3          |               |               |
|                |             |                          | <u>~</u>            | o Rumm'se.     |               | ·             |
|                | K.          | X(K)                     | [xcx]               | <b>ζχικ</b> )  | (xck)         |               |
|                | -6          | 0                        | ٥                   |                | ٥             |               |
| - W. C S.      | -5          | 0                        |                     | δ              | O             |               |
|                | -4          | V - J. 786               | O                   | O              | O             |               |
|                | -2          | 0                        | 0                   |                | <del>/4</del> |               |
|                | -1          | ٥                        | 0                   | . 0            | . 0           |               |
|                | 0           | 6                        | δ                   | 0              | 0             |               |
|                | to a l      |                          | 0                   |                | 6             | •             |
| - N.<br>- G.   |             | - 74%                    | <u> </u>            | <u> </u>       |               | -             |
|                | <u>3</u>    |                          | /2                  | "/6            |               |               |
|                | 5           | . 6                      | <i>b</i>            | <u>0</u>       | 0             |               |
|                | 6           | 6                        | D                   |                | <u> </u>      |               |
|                |             |                          |                     |                |               |               |



|    | Date                                                                                                   |
|----|--------------------------------------------------------------------------------------------------------|
|    | Fourier sepresentation for aperiodic discrete time<br>Signal - Discrete time Pourier transform (DTFT). |
|    | pepinition!  The DIFT of a non-periodic sequence zon? è                                                |
|    | $x(n) = \frac{1}{2} x(n) e^{-inn} \rightarrow \text{Analysis eqn.}$                                    |
|    | The inverse DIFT of X(D) is gluen by                                                                   |
|    | $\frac{\sin}{x(v)} = \frac{\sin}{1-x(v)} = \cos v + \sin v + \sin v = \cos v$                          |
|    | Amplitude and phase Spectrum:                                                                          |
|    | amplitude spectrum and a plat of Exces Us a walled pheux spectrum.                                     |
| @n | find the DIFT of unit impulse sequence.                                                                |
|    | スピン> ら(ひ)                                                                                              |
|    | $\frac{v=-8}{8}$ $\frac{v=-8}{4\pi v} = \frac{1}{4\pi v}$                                              |
|    | = $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$                                                                  |
|    | = = 0 //                                                                                               |
|    |                                                                                                        |



|     |    | Page - 30                              |
|-----|----|----------------------------------------|
| •   | 1  | DatePage                               |
|     |    | Find the DIFT of the following         |
|     | 1) | x(n) = (1,2,4,6)<br>x(n) = (6,7,2,1,3) |
|     |    | ICN) 2 (6,7,2,1,3).                    |
|     |    | *                                      |
| +   |    |                                        |
|     |    |                                        |
| L L |    |                                        |
| •   |    |                                        |
|     |    |                                        |
|     |    |                                        |
|     |    |                                        |
|     |    |                                        |
| +   | 7  | •                                      |
|     |    | •                                      |
| -   |    |                                        |
|     |    |                                        |
| -   |    |                                        |
| -   | _  |                                        |





|    | Date Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Properties of OFFT!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | ) linearity;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | α(Ω) (Ω) (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)   (Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | $\frac{2\cos z}{\cos z} = \frac{2\cos z}{\cos z} = \frac{2\cos z}{\cos z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $\frac{u^{5-2}}{2} \propto x(u) = \frac{4}{2} \approx \frac{100}{200}$ $\frac{u^{5-2}}{2} = \frac{100}{200} = \frac{100}{200}$ $\frac{u^{5-2}}{2} = \frac{100}{200} = \frac{100}{200}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
|    | = axcas + bycas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8) | Time Shift.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | Here $\frac{1}{2}$                                                                                                                                                                                                                   |
|    | $\frac{1}{2}$ $\frac{1}$                                                                                                                                                                                                             |
|    | 02.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| •     |    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _     |    | Put m= n-no => n=m+no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |    | $\frac{m=-\infty}{\infty} = \frac{12}{2} (m+10), \qquad \frac{m=-\infty-10}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |    | $-\frac{1}{2} \approx \frac{1}{2} \approx 1$ |
|       |    | $= \frac{1000}{100} \times 100$ $= \frac{1000}{100} \times 100$ $= \frac{1000}{100} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | 3. | then zen= eizou xen corri x (v-vo).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -     |    | Description = -120 = -120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| #<br> | 3- | $\frac{1}{2} = \frac{1}{2} = \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |    | > ₹ X(Ω-Ω <sub>0</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |    | •.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| • . · |            | classmate  Date Page 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |            | $\frac{1}{1} = \frac{1}{2} = \frac{1}$                                                                                                                                                                                                              |
| •     |            | changing the order of Remorations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |            | $z(\Omega) = \frac{2}{2} \frac{2}{$ |
|       |            | $pud m=n-1 \implies n=m+1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |            | .: Z(D) = \( \int \) \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |            | > 20 xu) 2 ym) e in dial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |            | $\frac{15-9}{2} \times 115 = \frac{15-9}{2} $                                                           |
| -     |            | $\chi(\overline{\upsilon})$ $\chi(\overline{\upsilon})^{-}$ $\chi(\overline{\upsilon})^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |            | .: S(D)> X(D).Y(D).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 6.         | Multiplication (modulation):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | The second | Haces Soll K(v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1     |            | Then zin = xim -yim + PTF zin = 2 (xin) + yi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1     |            | mod: 2(2) = 2(1) = 1-21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1     |            | > \[ \begin{align*} \lambda \colon \c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |





| it t         | CLASSMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1            | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Account of the Community of the Communit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | pregrancy differentiation (multiplication by o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Y x(n) (DIFT) x(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | thun nacon corris i ducas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | $\frac{dv}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~            | proof 1 x cos > \$ x cos e-1-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | N2-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | differentiating both aide w. & to s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 500 M 100 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $\frac{dx(x)}{dx} > \frac{2}{2} x(x) e^{-ixx} (-ix).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 75 (-un) e . (-un).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 0.12 112-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 35         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30           | $\sim 1 d \times (0) \sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <del>\</del> | $\frac{1}{\sqrt{\sqrt{2}}} = \frac{1}{\sqrt{2}} (0 \times 100) e^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| . <u>.</u> . | $\frac{1}{1} \frac{dn}{dx(v)} = \frac{1}{2} \frac{dn}{dx(v)} = \frac{1}{2} \frac{dn}{dx(v)} = \frac{1}{2} \frac{dn}{dx(v)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CO) / R      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 7          | $\frac{1}{\sqrt{dx}} \frac{dx}{dx} = \frac{2}{\sqrt{2x}} \frac{1}{\sqrt{2x}} \frac{1}$ |
|              | Vaxue 2 2 nach e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| è            | da n= -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · ~          | DTO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 1) n xin corris j dxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | $\frac{d\Omega}{dx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| U            | Parseval's theven:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·            | SCUT COLL XCOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | then energy Es & Irrapila , C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Then energy, $E = \frac{2}{5}  \alpha cn \rangle  ^{\frac{1}{2}} \times (n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | $V = -\infty$ $\omega \pi$ $V \in \Sigma_{1} \setminus X \in \Sigma_{2} \setminus X \in \Sigma_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _            | -T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del>  | Proof:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | $E = \frac{1}{8}  \alpha(v) _{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | N2-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·            | = Z x(n) x cn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Z 2011. 2 C113.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e e          | N2 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



















| Date Page | ) |
|-----------|---|
|           | = |

|   | Frequency suponse in disords how system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| _ | The frequency exponse of a linear time invasions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|   | Spectrum of input sinusoids to the system,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|   | Surroign.  Surroign.  Show ordered for Shaker to the Shopened of jubring  Ju protection sorbourc dires for madeigning sorbouse and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|   | hen and the input sens to the system be eight. The output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _~;      |
|   | ghis given year on be obtained by using consolution $\frac{8un}{4} = \frac{8un}{4} = $ |          |
|   | = \(\frac{1}{2}\ldots \cdots \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Or       |
|   | = \leftarrow \leftarro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|   | $\frac{\kappa^2-\omega}{\sqrt{\rho}}$ $\frac{\omega}{\kappa^2-\omega}$ $\frac{\omega}{\kappa^2-\omega}$ $\frac{\omega}{\kappa^2-\omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TO THE   |
|   | The anaphity 4(0) is the prequency susponse of the System.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|   | SCOUSE FUE PLANTS ACUS HCD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> |
|   | A(D) = A(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,        |
|   | Response and a plot of KACOD Vs or is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| - | phose euponie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |

| Date Page                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100 - 1/2 e-10 how signs.  100 - 1/2 e-10 how signs.  100 - 1/2 e-10 how signs.                                                                                                                 |
| d) previous suppress, $\mu(\Omega) = \frac{\chi(\Omega)}{\chi(\Omega)} = \frac{1}{1 - \frac{1}{6}e^{-\frac{1}{3}\Omega}}$                                                                       |
| b) $H(\Omega) = \frac{1}{1 - \frac{1}{6}e^{-\frac{1}{2}\Omega} - \frac{1}{6}e^{-\frac{1}{2}\Omega}} = \frac{1}{(1 - \frac{1}{2}e^{-\frac{1}{2}\Omega})(1 + \frac{1}{2}e^{-\frac{1}{2}\Omega})}$ |
| $\frac{1 - 1/2 e^{j\Omega}}{(1 + 1/2 e^{j\Omega})}$                                                                                                                                             |
| 1= A (1+ = = in) + B (1- 1/2 = in)  PW = in = -3 => 1 = B(1+3/2)                                                                                                                                |
| B = 2/5                                                                                                                                                                                         |
| $Pad = \frac{2}{5} = 2 \implies 1 = A (1 + 2/3)$ $\frac{5}{8} A = 1$ $\frac{6}{2} 8/8$                                                                                                          |
| 1. H(D) = $\frac{9}{5} \frac{1}{(1-\frac{1}{2}e^{3\Omega})} + \frac{2}{5} \frac{1}{(1+\frac{1}{3}e^{3\Omega})}$ Taking inverse DTFT                                                             |
| <br>impulse lesponse, hon) = 3 (2) acm + 2 (-1/3) acm                                                                                                                                           |
| (i an un) spiris tagion.                                                                                                                                                                        |

| 1 |      | Page ZO.                                                                                                                                                                                                                                                 |
|---|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Can. | Consider a descrete bine LTI s/m with impulse elipon him = (2) uin). The Fourier transform determine the                                                                                                                                                 |
| 3 | 13.  | en bouse to the tollowing start.  b) xen: (-1) cen).                                                                                                                                                                                                     |
| 3 |      | Ans: $H(\Omega) = (2)^{N} u(\Omega)$ $1 - 2 = 1$                                                                                                                                                                                                         |
|   |      | a) x (m) 2 (3/2) u(n)                                                                                                                                                                                                                                    |
|   |      | X(V) = 1-3/4 E-12                                                                                                                                                                                                                                        |
|   |      | $y(\Omega) = H(\Omega) \cdot \chi(\Omega)$ $= \frac{1}{1 - \frac{1}{2}e^{-\frac{1}{2}\Omega}} \cdot \frac{1}{1 - \frac{3}{4}e^{-\frac{1}{2}\Omega}} = \frac{1}{1 - \frac{1}{2}e^{-\frac{1}{2}\Omega}} + \frac{1}{1 - \frac{3}{4}e^{-\frac{1}{2}\Omega}}$ |
|   |      | A = 3 , B = -2                                                                                                                                                                                                                                           |
| 1 |      | 1. YCD)= 8. 1-1/2e <sup>3/2</sup> = 2 1-3/4e <sup>-1/2</sup>                                                                                                                                                                                             |
|   | 5    | Taking inverse DTF1  yens = $3(20)^n$ ulp) = $2(3/4)^n$ ulp) //                                                                                                                                                                                          |
|   | ., 1 | $x(x) = \frac{1+5-1-x}{1+1-1-x}$                                                                                                                                                                                                                         |
|   |      | Y(D) = H(D)-X(D) = 1-1/2000 1+000 = 1-1/2000 1+00                                                                                                                                                                                                        |
|   | - 11 | Touring inerse DIFT  BUND = 2/5 (1/2) min) + = (-1) min)/                                                                                                                                                                                                |
| , | - 11 |                                                                                                                                                                                                                                                          |

